NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syland GIF version

Theorem syland 467
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
Hypotheses
Ref Expression
syland.1 (φ → (ψχ))
syland.2 (φ → ((χ θ) → τ))
Assertion
Ref Expression
syland (φ → ((ψ θ) → τ))

Proof of Theorem syland
StepHypRef Expression
1 syland.1 . . 3 (φ → (ψχ))
2 syland.2 . . . 4 (φ → ((χ θ) → τ))
32exp3a 425 . . 3 (φ → (χ → (θτ)))
41, 3syld 40 . 2 (φ → (ψ → (θτ)))
54imp3a 420 1 (φ → ((ψ θ) → τ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  sylan2d  468  syl2and  469  sylani  635
  Copyright terms: Public domain W3C validator