NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anim1i GIF version

Theorem anim1i 551
Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
anim1i.1 (φψ)
Assertion
Ref Expression
anim1i ((φ χ) → (ψ χ))

Proof of Theorem anim1i
StepHypRef Expression
1 anim1i.1 . 2 (φψ)
2 id 19 . 2 (χχ)
31, 2anim12i 549 1 ((φ χ) → (ψ χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  sylanl1  631  sylanr1  633  disamis  2314  sucevenodd  4511  sucoddeven  4512  fun11uni  5163  fores  5279  isomin  5497  ndmovass  5619
  Copyright terms: Public domain W3C validator