NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syld3an1 GIF version

Theorem syld3an1 1228
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.)
Hypotheses
Ref Expression
syld3an1.1 ((χ ψ θ) → φ)
syld3an1.2 ((φ ψ θ) → τ)
Assertion
Ref Expression
syld3an1 ((χ ψ θ) → τ)

Proof of Theorem syld3an1
StepHypRef Expression
1 syld3an1.1 . . . 4 ((χ ψ θ) → φ)
213com13 1156 . . 3 ((θ ψ χ) → φ)
3 syld3an1.2 . . . 4 ((φ ψ θ) → τ)
433com13 1156 . . 3 ((θ ψ φ) → τ)
52, 4syld3an3 1227 . 2 ((θ ψ χ) → τ)
653com13 1156 1 ((χ ψ θ) → τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator