New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syld3an1 | GIF version |
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) |
Ref | Expression |
---|---|
syld3an1.1 | ⊢ ((χ ∧ ψ ∧ θ) → φ) |
syld3an1.2 | ⊢ ((φ ∧ ψ ∧ θ) → τ) |
Ref | Expression |
---|---|
syld3an1 | ⊢ ((χ ∧ ψ ∧ θ) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld3an1.1 | . . . 4 ⊢ ((χ ∧ ψ ∧ θ) → φ) | |
2 | 1 | 3com13 1156 | . . 3 ⊢ ((θ ∧ ψ ∧ χ) → φ) |
3 | syld3an1.2 | . . . 4 ⊢ ((φ ∧ ψ ∧ θ) → τ) | |
4 | 3 | 3com13 1156 | . . 3 ⊢ ((θ ∧ ψ ∧ φ) → τ) |
5 | 2, 4 | syld3an3 1227 | . 2 ⊢ ((θ ∧ ψ ∧ χ) → τ) |
6 | 5 | 3com13 1156 | 1 ⊢ ((χ ∧ ψ ∧ θ) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |