New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syld3an3 | GIF version |
Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
Ref | Expression |
---|---|
syld3an3.1 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
syld3an3.2 | ⊢ ((φ ∧ ψ ∧ θ) → τ) |
Ref | Expression |
---|---|
syld3an3 | ⊢ ((φ ∧ ψ ∧ χ) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 955 | . 2 ⊢ ((φ ∧ ψ ∧ χ) → φ) | |
2 | simp2 956 | . 2 ⊢ ((φ ∧ ψ ∧ χ) → ψ) | |
3 | syld3an3.1 | . 2 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
4 | syld3an3.2 | . 2 ⊢ ((φ ∧ ψ ∧ θ) → τ) | |
5 | 1, 2, 3, 4 | syl3anc 1182 | 1 ⊢ ((φ ∧ ψ ∧ χ) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: syld3an1 1228 syld3an2 1229 resin 5308 |
Copyright terms: Public domain | W3C validator |