NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax10o GIF version

Theorem ax10o 1952
Description: Show that ax-10o 2139 can be derived from ax-10 2140 in the form of ax10 1944. Normally, ax10o 1952 should be used rather than ax-10o 2139, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof modification is discouraged.)
Assertion
Ref Expression
ax10o (x x = y → (xφyφ))

Proof of Theorem ax10o
StepHypRef Expression
1 ax10 1944 . 2 (x x = yy y = x)
2 ax-11 1746 . . . 4 (y = x → (xφy(y = xφ)))
32equcoms 1681 . . 3 (x = y → (xφy(y = xφ)))
43sps 1754 . 2 (x x = y → (xφy(y = xφ)))
5 pm2.27 35 . . 3 (y = x → ((y = xφ) → φ))
65al2imi 1561 . 2 (y y = x → (y(y = xφ) → yφ))
71, 4, 6sylsyld 52 1 (x x = y → (xφyφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  hbae  1953  dvelimh  1964  dral1  1965
  Copyright terms: Public domain W3C validator