New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > a16gALT | GIF version |
Description: A generalization of Axiom ax-16 2144. Alternate proof of a16g 1945 that uses df-sb 1649. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
a16gALT | ⊢ (∀x x = y → (φ → ∀zφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aev 1991 | . 2 ⊢ (∀x x = y → ∀z z = x) | |
2 | ax16ALT2 2048 | . 2 ⊢ (∀x x = y → (φ → ∀xφ)) | |
3 | biidd 228 | . . . 4 ⊢ (∀z z = x → (φ ↔ φ)) | |
4 | 3 | dral1 1965 | . . 3 ⊢ (∀z z = x → (∀zφ ↔ ∀xφ)) |
5 | 4 | biimprd 214 | . 2 ⊢ (∀z z = x → (∀xφ → ∀zφ)) |
6 | 1, 2, 5 | sylsyld 52 | 1 ⊢ (∀x x = y → (φ → ∀zφ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |