NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  tbt GIF version

Theorem tbt 333
Description: A wff is equivalent to its equivalence with truth. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypothesis
Ref Expression
tbt.1 φ
Assertion
Ref Expression
tbt (ψ ↔ (ψφ))

Proof of Theorem tbt
StepHypRef Expression
1 tbt.1 . 2 φ
2 ibibr 332 . . 3 ((φψ) ↔ (φ → (ψφ)))
32pm5.74ri 237 . 2 (φ → (ψ ↔ (ψφ)))
41, 3ax-mp 5 1 (ψ ↔ (ψφ))
Colors of variables: wff setvar class
Syntax hints:  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  tbtru  1324  exists1  2293  reu6  3026  eqv  3566
  Copyright terms: Public domain W3C validator