| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > exists1 | GIF version | ||
| Description: Two ways to express "only one thing exists." The left-hand side requires only one variable to express this. Both sides are false in set theory; see theorem dtru in set.mm. (Contributed by NM, 5-Apr-2004.) |
| Ref | Expression |
|---|---|
| exists1 | ⊢ (∃!x x = x ↔ ∀x x = y) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2208 | . 2 ⊢ (∃!x x = x ↔ ∃y∀x(x = x ↔ x = y)) | |
| 2 | equid 1676 | . . . . . 6 ⊢ x = x | |
| 3 | 2 | tbt 333 | . . . . 5 ⊢ (x = y ↔ (x = y ↔ x = x)) |
| 4 | bicom 191 | . . . . 5 ⊢ ((x = y ↔ x = x) ↔ (x = x ↔ x = y)) | |
| 5 | 3, 4 | bitri 240 | . . . 4 ⊢ (x = y ↔ (x = x ↔ x = y)) |
| 6 | 5 | albii 1566 | . . 3 ⊢ (∀x x = y ↔ ∀x(x = x ↔ x = y)) |
| 7 | 6 | exbii 1582 | . 2 ⊢ (∃y∀x x = y ↔ ∃y∀x(x = x ↔ x = y)) |
| 8 | nfae 1954 | . . 3 ⊢ Ⅎy∀x x = y | |
| 9 | 8 | 19.9 1783 | . 2 ⊢ (∃y∀x x = y ↔ ∀x x = y) |
| 10 | 1, 7, 9 | 3bitr2i 264 | 1 ⊢ (∃!x x = x ↔ ∀x x = y) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∀wal 1540 ∃wex 1541 = wceq 1642 ∃!weu 2204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-eu 2208 |
| This theorem is referenced by: exists2 2294 |
| Copyright terms: Public domain | W3C validator |