NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm5.74ri GIF version

Theorem pm5.74ri 237
Description: Distribution of implication over biconditional (reverse inference rule). (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
pm5.74ri.1 ((φψ) ↔ (φχ))
Assertion
Ref Expression
pm5.74ri (φ → (ψχ))

Proof of Theorem pm5.74ri
StepHypRef Expression
1 pm5.74ri.1 . 2 ((φψ) ↔ (φχ))
2 pm5.74 235 . 2 ((φ → (ψχ)) ↔ ((φψ) ↔ (φχ)))
31, 2mpbir 200 1 (φ → (ψχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  bitrd  244  bibi2d  309  tbt  333  sbco2d  2087  2mos  2283
  Copyright terms: Public domain W3C validator