New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.74ri | GIF version |
Description: Distribution of implication over biconditional (reverse inference rule). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74ri.1 | ⊢ ((φ → ψ) ↔ (φ → χ)) |
Ref | Expression |
---|---|
pm5.74ri | ⊢ (φ → (ψ ↔ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74ri.1 | . 2 ⊢ ((φ → ψ) ↔ (φ → χ)) | |
2 | pm5.74 235 | . 2 ⊢ ((φ → (ψ ↔ χ)) ↔ ((φ → ψ) ↔ (φ → χ))) | |
3 | 1, 2 | mpbir 200 | 1 ⊢ (φ → (ψ ↔ χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bitrd 244 bibi2d 309 tbt 333 sbco2d 2087 2mos 2283 |
Copyright terms: Public domain | W3C validator |