| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eqv | GIF version | ||
| Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.) |
| Ref | Expression |
|---|---|
| eqv | ⊢ (A = V ↔ ∀x x ∈ A) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2347 | . 2 ⊢ (A = V ↔ ∀x(x ∈ A ↔ x ∈ V)) | |
| 2 | vex 2863 | . . . 4 ⊢ x ∈ V | |
| 3 | 2 | tbt 333 | . . 3 ⊢ (x ∈ A ↔ (x ∈ A ↔ x ∈ V)) |
| 4 | 3 | albii 1566 | . 2 ⊢ (∀x x ∈ A ↔ ∀x(x ∈ A ↔ x ∈ V)) |
| 5 | 1, 4 | bitr4i 243 | 1 ⊢ (A = V ↔ ∀x x ∈ A) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
| This theorem is referenced by: nincompl 4073 xpvv 4844 dmi 4920 1stfo 5506 2ndfo 5507 swapf1o 5512 dmep 5525 |
| Copyright terms: Public domain | W3C validator |