NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqv GIF version

Theorem eqv 3566
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.)
Assertion
Ref Expression
eqv (A = V ↔ x x A)
Distinct variable group:   x,A

Proof of Theorem eqv
StepHypRef Expression
1 dfcleq 2347 . 2 (A = V ↔ x(x Ax V))
2 vex 2863 . . . 4 x V
32tbt 333 . . 3 (x A ↔ (x Ax V))
43albii 1566 . 2 (x x Ax(x Ax V))
51, 4bitr4i 243 1 (A = V ↔ x x A)
Colors of variables: wff setvar class
Syntax hints:  wb 176  wal 1540   = wceq 1642   wcel 1710  Vcvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-v 2862
This theorem is referenced by:  nincompl  4073  xpvv  4844  dmi  4920  1stfo  5506  2ndfo  5507  swapf1o  5512  dmep  5525
  Copyright terms: Public domain W3C validator