Proof of Theorem reu6
| Step | Hyp | Ref
| Expression |
| 1 | | df-reu 2622 |
. 2
⊢ (∃!x ∈ A φ ↔ ∃!x(x ∈ A ∧ φ)) |
| 2 | | 19.28v 1895 |
. . . . 5
⊢ (∀x(y ∈ A ∧ (x ∈ A → (φ
↔ x = y))) ↔ (y
∈ A ∧ ∀x(x ∈ A →
(φ ↔ x = y)))) |
| 3 | | eleq1 2413 |
. . . . . . . . . . . 12
⊢ (x = y →
(x ∈
A ↔ y ∈ A)) |
| 4 | | sbequ12 1919 |
. . . . . . . . . . . 12
⊢ (x = y →
(φ ↔ [y / x]φ)) |
| 5 | 3, 4 | anbi12d 691 |
. . . . . . . . . . 11
⊢ (x = y →
((x ∈
A ∧ φ) ↔ (y ∈ A ∧ [y / x]φ))) |
| 6 | | eqeq1 2359 |
. . . . . . . . . . 11
⊢ (x = y →
(x = y
↔ y = y)) |
| 7 | 5, 6 | bibi12d 312 |
. . . . . . . . . 10
⊢ (x = y →
(((x ∈
A ∧ φ) ↔ x = y) ↔
((y ∈
A ∧
[y / x]φ) ↔
y = y))) |
| 8 | | eqid 2353 |
. . . . . . . . . . . 12
⊢ y = y |
| 9 | 8 | tbt 333 |
. . . . . . . . . . 11
⊢ ((y ∈ A ∧ [y / x]φ) ↔ ((y ∈ A ∧ [y / x]φ) ↔ y = y)) |
| 10 | | simpl 443 |
. . . . . . . . . . 11
⊢ ((y ∈ A ∧ [y / x]φ) → y ∈ A) |
| 11 | 9, 10 | sylbir 204 |
. . . . . . . . . 10
⊢ (((y ∈ A ∧ [y / x]φ) ↔ y = y) →
y ∈
A) |
| 12 | 7, 11 | syl6bi 219 |
. . . . . . . . 9
⊢ (x = y →
(((x ∈
A ∧ φ) ↔ x = y) →
y ∈
A)) |
| 13 | 12 | spimv 1990 |
. . . . . . . 8
⊢ (∀x((x ∈ A ∧ φ) ↔ x = y) →
y ∈
A) |
| 14 | | bi1 178 |
. . . . . . . . . . . 12
⊢ (((x ∈ A ∧ φ) ↔ x = y) →
((x ∈
A ∧ φ) → x = y)) |
| 15 | 14 | expdimp 426 |
. . . . . . . . . . 11
⊢ ((((x ∈ A ∧ φ) ↔ x = y) ∧ x ∈ A) →
(φ → x = y)) |
| 16 | | bi2 189 |
. . . . . . . . . . . . 13
⊢ (((x ∈ A ∧ φ) ↔ x = y) →
(x = y
→ (x ∈ A ∧ φ))) |
| 17 | | simpr 447 |
. . . . . . . . . . . . 13
⊢ ((x ∈ A ∧ φ) → φ) |
| 18 | 16, 17 | syl6 29 |
. . . . . . . . . . . 12
⊢ (((x ∈ A ∧ φ) ↔ x = y) →
(x = y
→ φ)) |
| 19 | 18 | adantr 451 |
. . . . . . . . . . 11
⊢ ((((x ∈ A ∧ φ) ↔ x = y) ∧ x ∈ A) →
(x = y
→ φ)) |
| 20 | 15, 19 | impbid 183 |
. . . . . . . . . 10
⊢ ((((x ∈ A ∧ φ) ↔ x = y) ∧ x ∈ A) →
(φ ↔ x = y)) |
| 21 | 20 | ex 423 |
. . . . . . . . 9
⊢ (((x ∈ A ∧ φ) ↔ x = y) →
(x ∈
A → (φ ↔ x = y))) |
| 22 | 21 | sps 1754 |
. . . . . . . 8
⊢ (∀x((x ∈ A ∧ φ) ↔ x = y) →
(x ∈
A → (φ ↔ x = y))) |
| 23 | 13, 22 | jca 518 |
. . . . . . 7
⊢ (∀x((x ∈ A ∧ φ) ↔ x = y) →
(y ∈
A ∧
(x ∈
A → (φ ↔ x = y)))) |
| 24 | 23 | a5i 1789 |
. . . . . 6
⊢ (∀x((x ∈ A ∧ φ) ↔ x = y) →
∀x(y ∈ A ∧ (x ∈ A →
(φ ↔ x = y)))) |
| 25 | | bi1 178 |
. . . . . . . . . . 11
⊢ ((φ ↔ x = y) →
(φ → x = y)) |
| 26 | 25 | imim2i 13 |
. . . . . . . . . 10
⊢ ((x ∈ A → (φ
↔ x = y)) → (x
∈ A
→ (φ → x = y))) |
| 27 | 26 | imp3a 420 |
. . . . . . . . 9
⊢ ((x ∈ A → (φ
↔ x = y)) → ((x
∈ A ∧ φ) →
x = y)) |
| 28 | 27 | adantl 452 |
. . . . . . . 8
⊢ ((y ∈ A ∧ (x ∈ A → (φ
↔ x = y))) → ((x
∈ A ∧ φ) →
x = y)) |
| 29 | | eleq1a 2422 |
. . . . . . . . . . . 12
⊢ (y ∈ A → (x =
y → x ∈ A)) |
| 30 | 29 | adantr 451 |
. . . . . . . . . . 11
⊢ ((y ∈ A ∧ (x ∈ A → (φ
↔ x = y))) → (x =
y → x ∈ A)) |
| 31 | 30 | imp 418 |
. . . . . . . . . 10
⊢ (((y ∈ A ∧ (x ∈ A → (φ
↔ x = y))) ∧ x = y) →
x ∈
A) |
| 32 | | bi2 189 |
. . . . . . . . . . . . . 14
⊢ ((φ ↔ x = y) →
(x = y
→ φ)) |
| 33 | 32 | imim2i 13 |
. . . . . . . . . . . . 13
⊢ ((x ∈ A → (φ
↔ x = y)) → (x
∈ A
→ (x = y → φ))) |
| 34 | 33 | com23 72 |
. . . . . . . . . . . 12
⊢ ((x ∈ A → (φ
↔ x = y)) → (x =
y → (x ∈ A → φ))) |
| 35 | 34 | imp 418 |
. . . . . . . . . . 11
⊢ (((x ∈ A → (φ
↔ x = y)) ∧ x = y) →
(x ∈
A → φ)) |
| 36 | 35 | adantll 694 |
. . . . . . . . . 10
⊢ (((y ∈ A ∧ (x ∈ A → (φ
↔ x = y))) ∧ x = y) →
(x ∈
A → φ)) |
| 37 | 31, 36 | jcai 522 |
. . . . . . . . 9
⊢ (((y ∈ A ∧ (x ∈ A → (φ
↔ x = y))) ∧ x = y) →
(x ∈
A ∧ φ)) |
| 38 | 37 | ex 423 |
. . . . . . . 8
⊢ ((y ∈ A ∧ (x ∈ A → (φ
↔ x = y))) → (x =
y → (x ∈ A ∧ φ))) |
| 39 | 28, 38 | impbid 183 |
. . . . . . 7
⊢ ((y ∈ A ∧ (x ∈ A → (φ
↔ x = y))) → ((x
∈ A ∧ φ) ↔
x = y)) |
| 40 | 39 | alimi 1559 |
. . . . . 6
⊢ (∀x(y ∈ A ∧ (x ∈ A → (φ
↔ x = y))) → ∀x((x ∈ A ∧ φ) ↔ x = y)) |
| 41 | 24, 40 | impbii 180 |
. . . . 5
⊢ (∀x((x ∈ A ∧ φ) ↔ x = y) ↔
∀x(y ∈ A ∧ (x ∈ A →
(φ ↔ x = y)))) |
| 42 | | df-ral 2620 |
. . . . . 6
⊢ (∀x ∈ A (φ ↔ x = y) ↔
∀x(x ∈ A →
(φ ↔ x = y))) |
| 43 | 42 | anbi2i 675 |
. . . . 5
⊢ ((y ∈ A ∧ ∀x ∈ A (φ ↔ x = y)) ↔
(y ∈
A ∧ ∀x(x ∈ A → (φ
↔ x = y)))) |
| 44 | 2, 41, 43 | 3bitr4i 268 |
. . . 4
⊢ (∀x((x ∈ A ∧ φ) ↔ x = y) ↔
(y ∈
A ∧ ∀x ∈ A (φ ↔ x = y))) |
| 45 | 44 | exbii 1582 |
. . 3
⊢ (∃y∀x((x ∈ A ∧ φ) ↔ x = y) ↔
∃y(y ∈ A ∧ ∀x ∈ A (φ ↔
x = y))) |
| 46 | | df-eu 2208 |
. . 3
⊢ (∃!x(x ∈ A ∧ φ) ↔ ∃y∀x((x ∈ A ∧ φ) ↔ x = y)) |
| 47 | | df-rex 2621 |
. . 3
⊢ (∃y ∈ A ∀x ∈ A (φ ↔ x = y) ↔
∃y(y ∈ A ∧ ∀x ∈ A (φ ↔
x = y))) |
| 48 | 45, 46, 47 | 3bitr4i 268 |
. 2
⊢ (∃!x(x ∈ A ∧ φ) ↔ ∃y ∈ A ∀x ∈ A (φ ↔ x = y)) |
| 49 | 1, 48 | bitri 240 |
1
⊢ (∃!x ∈ A φ ↔ ∃y ∈ A ∀x ∈ A (φ ↔ x = y)) |