Proof of Theorem tbwlem2
Step | Hyp | Ref
| Expression |
1 | | tbw-ax4 1468 |
. . . . 5
⊢ ( ⊥ →
χ) |
2 | | tbw-ax1 1465 |
. . . . . 6
⊢ ((ψ → ⊥ ) → (( ⊥ →
χ) → (ψ → χ))) |
3 | | tbwlem1 1470 |
. . . . . 6
⊢ (((ψ → ⊥ ) → (( ⊥ →
χ) → (ψ → χ))) → (( ⊥ → χ) → ((ψ → ⊥ ) → (ψ → χ)))) |
4 | 2, 3 | ax-mp 5 |
. . . . 5
⊢ (( ⊥ →
χ) → ((ψ → ⊥ ) → (ψ → χ))) |
5 | 1, 4 | ax-mp 5 |
. . . 4
⊢ ((ψ → ⊥ ) → (ψ → χ)) |
6 | | tbwlem1 1470 |
. . . 4
⊢ (((ψ → ⊥ ) → (ψ → χ)) → (ψ → ((ψ → ⊥ ) → χ))) |
7 | 5, 6 | ax-mp 5 |
. . 3
⊢ (ψ → ((ψ → ⊥ ) → χ)) |
8 | | tbw-ax1 1465 |
. . 3
⊢ ((φ → (ψ → ⊥ )) → (((ψ → ⊥ ) → χ) → (φ → χ))) |
9 | | tbw-ax1 1465 |
. . 3
⊢ ((ψ → ((ψ → ⊥ ) → χ)) → ((((ψ → ⊥ ) → χ) → (φ → χ)) → (ψ → (φ → χ)))) |
10 | 7, 8, 9 | mpsyl 59 |
. 2
⊢ ((φ → (ψ → ⊥ )) → (ψ → (φ → χ))) |
11 | | tbw-ax1 1465 |
. 2
⊢ ((ψ → (φ → χ)) → (((φ → χ) → θ) → (ψ → θ))) |
12 | 10, 11 | tbwsyl 1469 |
1
⊢ ((φ → (ψ → ⊥ )) → (((φ → χ) → θ) → (ψ → θ))) |