New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nbbn | GIF version |
Description: Move negation outside of biconditional. Compare Theorem *5.18 of [WhiteheadRussell] p. 124. (Contributed by NM, 27-Jun-2002.) (Proof shortened by Wolf Lammen, 20-Sep-2013.) |
Ref | Expression |
---|---|
nbbn | ⊢ ((¬ φ ↔ ψ) ↔ ¬ (φ ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor3 346 | . 2 ⊢ (¬ (φ ↔ ψ) ↔ (φ ↔ ¬ ψ)) | |
2 | con2bi 318 | . 2 ⊢ ((φ ↔ ¬ ψ) ↔ (ψ ↔ ¬ φ)) | |
3 | bicom 191 | . 2 ⊢ ((ψ ↔ ¬ φ) ↔ (¬ φ ↔ ψ)) | |
4 | 1, 2, 3 | 3bitrri 263 | 1 ⊢ ((¬ φ ↔ ψ) ↔ ¬ (φ ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: biass 348 pclem6 896 xorass 1308 xorneg1 1311 trubifal 1351 hadbi 1387 mpto2OLD 1535 |
Copyright terms: Public domain | W3C validator |