| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm5.32 | GIF version | ||
| Description: Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| pm5.32 | ⊢ ((φ → (ψ ↔ χ)) ↔ ((φ ∧ ψ) ↔ (φ ∧ χ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | notbi 286 | . . . 4 ⊢ ((ψ ↔ χ) ↔ (¬ ψ ↔ ¬ χ)) | |
| 2 | 1 | imbi2i 303 | . . 3 ⊢ ((φ → (ψ ↔ χ)) ↔ (φ → (¬ ψ ↔ ¬ χ))) | 
| 3 | pm5.74 235 | . . 3 ⊢ ((φ → (¬ ψ ↔ ¬ χ)) ↔ ((φ → ¬ ψ) ↔ (φ → ¬ χ))) | |
| 4 | notbi 286 | . . 3 ⊢ (((φ → ¬ ψ) ↔ (φ → ¬ χ)) ↔ (¬ (φ → ¬ ψ) ↔ ¬ (φ → ¬ χ))) | |
| 5 | 2, 3, 4 | 3bitri 262 | . 2 ⊢ ((φ → (ψ ↔ χ)) ↔ (¬ (φ → ¬ ψ) ↔ ¬ (φ → ¬ χ))) | 
| 6 | df-an 360 | . . 3 ⊢ ((φ ∧ ψ) ↔ ¬ (φ → ¬ ψ)) | |
| 7 | df-an 360 | . . 3 ⊢ ((φ ∧ χ) ↔ ¬ (φ → ¬ χ)) | |
| 8 | 6, 7 | bibi12i 306 | . 2 ⊢ (((φ ∧ ψ) ↔ (φ ∧ χ)) ↔ (¬ (φ → ¬ ψ) ↔ ¬ (φ → ¬ χ))) | 
| 9 | 5, 8 | bitr4i 243 | 1 ⊢ ((φ → (ψ ↔ χ)) ↔ ((φ ∧ ψ) ↔ (φ ∧ χ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: pm5.32i 618 pm5.32d 620 xordi 865 cbval2 2004 cbvex2 2005 rabbi 2790 | 
| Copyright terms: Public domain | W3C validator |