New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.32 | GIF version |
Description: Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.32 | ⊢ ((φ → (ψ ↔ χ)) ↔ ((φ ∧ ψ) ↔ (φ ∧ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbi 286 | . . . 4 ⊢ ((ψ ↔ χ) ↔ (¬ ψ ↔ ¬ χ)) | |
2 | 1 | imbi2i 303 | . . 3 ⊢ ((φ → (ψ ↔ χ)) ↔ (φ → (¬ ψ ↔ ¬ χ))) |
3 | pm5.74 235 | . . 3 ⊢ ((φ → (¬ ψ ↔ ¬ χ)) ↔ ((φ → ¬ ψ) ↔ (φ → ¬ χ))) | |
4 | notbi 286 | . . 3 ⊢ (((φ → ¬ ψ) ↔ (φ → ¬ χ)) ↔ (¬ (φ → ¬ ψ) ↔ ¬ (φ → ¬ χ))) | |
5 | 2, 3, 4 | 3bitri 262 | . 2 ⊢ ((φ → (ψ ↔ χ)) ↔ (¬ (φ → ¬ ψ) ↔ ¬ (φ → ¬ χ))) |
6 | df-an 360 | . . 3 ⊢ ((φ ∧ ψ) ↔ ¬ (φ → ¬ ψ)) | |
7 | df-an 360 | . . 3 ⊢ ((φ ∧ χ) ↔ ¬ (φ → ¬ χ)) | |
8 | 6, 7 | bibi12i 306 | . 2 ⊢ (((φ ∧ ψ) ↔ (φ ∧ χ)) ↔ (¬ (φ → ¬ ψ) ↔ ¬ (φ → ¬ χ))) |
9 | 5, 8 | bitr4i 243 | 1 ⊢ ((φ → (ψ ↔ χ)) ↔ ((φ ∧ ψ) ↔ (φ ∧ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: pm5.32i 618 pm5.32d 620 xordi 865 cbval2 2004 cbvex2 2005 rabbi 2790 |
Copyright terms: Public domain | W3C validator |