Proof of Theorem 3vth6
| Step | Hyp | Ref
| Expression |
| 1 | | oridm 110 |
. . 3
(((a →2 b)⊥ →2 (b ∪ c))
∪ ((a →2 b)⊥ →2 (b ∪ c))) =
((a →2 b)⊥ →2 (b ∪ c)) |
| 2 | 1 | ax-r1 35 |
. 2
((a →2 b)⊥ →2 (b ∪ c)) =
(((a →2 b)⊥ →2 (b ∪ c))
∪ ((a →2 b)⊥ →2 (b ∪ c))) |
| 3 | | 3vth4 807 |
. . . 4
((a →2 b)⊥ →2 (b ∪ c)) =
((a →2 c)⊥ →2 (b ∪ c)) |
| 4 | 3 | lor 70 |
. . 3
(((a →2 b)⊥ →2 (b ∪ c))
∪ ((a →2 b)⊥ →2 (b ∪ c))) =
(((a →2 b)⊥ →2 (b ∪ c))
∪ ((a →2 c)⊥ →2 (b ∪ c))) |
| 5 | | 3vth5 808 |
. . . . 5
((a →2 b)⊥ →2 (b ∪ c)) =
(c ∪ ((a →2 b) ∩ (c
→2 b))) |
| 6 | | ax-a2 31 |
. . . . . . 7
(b ∪ c) = (c ∪
b) |
| 7 | 6 | ud2lem0a 258 |
. . . . . 6
((a →2 c)⊥ →2 (b ∪ c)) =
((a →2 c)⊥ →2 (c ∪ b)) |
| 8 | | 3vth5 808 |
. . . . . 6
((a →2 c)⊥ →2 (c ∪ b)) =
(b ∪ ((a →2 c) ∩ (b
→2 c))) |
| 9 | 7, 8 | ax-r2 36 |
. . . . 5
((a →2 c)⊥ →2 (b ∪ c)) =
(b ∪ ((a →2 c) ∩ (b
→2 c))) |
| 10 | 5, 9 | 2or 72 |
. . . 4
(((a →2 b)⊥ →2 (b ∪ c))
∪ ((a →2 c)⊥ →2 (b ∪ c))) =
((c ∪ ((a →2 b) ∩ (c
→2 b))) ∪ (b ∪ ((a
→2 c) ∩ (b →2 c)))) |
| 11 | | or4 84 |
. . . . 5
((c ∪ ((a →2 b) ∩ (c
→2 b))) ∪ (b ∪ ((a
→2 c) ∩ (b →2 c)))) = ((c
∪ b) ∪ (((a →2 b) ∩ (c
→2 b)) ∪ ((a →2 c) ∩ (b
→2 c)))) |
| 12 | | ax-a2 31 |
. . . . . . 7
(c ∪ b) = (b ∪
c) |
| 13 | 12 | ax-r5 38 |
. . . . . 6
((c ∪ b) ∪ (((a
→2 b) ∩ (c →2 b)) ∪ ((a
→2 c) ∩ (b →2 c)))) = ((b
∪ c) ∪ (((a →2 b) ∩ (c
→2 b)) ∪ ((a →2 c) ∩ (b
→2 c)))) |
| 14 | | or4 84 |
. . . . . . 7
((b ∪ c) ∪ (((a
→2 b) ∩ (c →2 b)) ∪ ((a
→2 c) ∩ (b →2 c)))) = ((b
∪ ((a →2 b) ∩ (c
→2 b))) ∪ (c ∪ ((a
→2 c) ∩ (b →2 c)))) |
| 15 | | leo 158 |
. . . . . . . . . . 11
b ≤ (b ∪ (a⊥ ∩ b⊥ )) |
| 16 | | df-i2 45 |
. . . . . . . . . . . 12
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
| 17 | 16 | ax-r1 35 |
. . . . . . . . . . 11
(b ∪ (a⊥ ∩ b⊥ )) = (a →2 b) |
| 18 | 15, 17 | lbtr 139 |
. . . . . . . . . 10
b ≤ (a →2 b) |
| 19 | | leo 158 |
. . . . . . . . . . 11
b ≤ (b ∪ (c⊥ ∩ b⊥ )) |
| 20 | | df-i2 45 |
. . . . . . . . . . . 12
(c →2 b) = (b ∪
(c⊥ ∩ b⊥ )) |
| 21 | 20 | ax-r1 35 |
. . . . . . . . . . 11
(b ∪ (c⊥ ∩ b⊥ )) = (c →2 b) |
| 22 | 19, 21 | lbtr 139 |
. . . . . . . . . 10
b ≤ (c →2 b) |
| 23 | 18, 22 | ler2an 173 |
. . . . . . . . 9
b ≤ ((a →2 b) ∩ (c
→2 b)) |
| 24 | 23 | df-le2 131 |
. . . . . . . 8
(b ∪ ((a →2 b) ∩ (c
→2 b))) = ((a →2 b) ∩ (c
→2 b)) |
| 25 | | leo 158 |
. . . . . . . . . . 11
c ≤ (c ∪ (a⊥ ∩ c⊥ )) |
| 26 | | df-i2 45 |
. . . . . . . . . . . 12
(a →2 c) = (c ∪
(a⊥ ∩ c⊥ )) |
| 27 | 26 | ax-r1 35 |
. . . . . . . . . . 11
(c ∪ (a⊥ ∩ c⊥ )) = (a →2 c) |
| 28 | 25, 27 | lbtr 139 |
. . . . . . . . . 10
c ≤ (a →2 c) |
| 29 | | leo 158 |
. . . . . . . . . . 11
c ≤ (c ∪ (b⊥ ∩ c⊥ )) |
| 30 | | df-i2 45 |
. . . . . . . . . . . 12
(b →2 c) = (c ∪
(b⊥ ∩ c⊥ )) |
| 31 | 30 | ax-r1 35 |
. . . . . . . . . . 11
(c ∪ (b⊥ ∩ c⊥ )) = (b →2 c) |
| 32 | 29, 31 | lbtr 139 |
. . . . . . . . . 10
c ≤ (b →2 c) |
| 33 | 28, 32 | ler2an 173 |
. . . . . . . . 9
c ≤ ((a →2 c) ∩ (b
→2 c)) |
| 34 | 33 | df-le2 131 |
. . . . . . . 8
(c ∪ ((a →2 c) ∩ (b
→2 c))) = ((a →2 c) ∩ (b
→2 c)) |
| 35 | 24, 34 | 2or 72 |
. . . . . . 7
((b ∪ ((a →2 b) ∩ (c
→2 b))) ∪ (c ∪ ((a
→2 c) ∩ (b →2 c)))) = (((a
→2 b) ∩ (c →2 b)) ∪ ((a
→2 c) ∩ (b →2 c))) |
| 36 | 14, 35 | ax-r2 36 |
. . . . . 6
((b ∪ c) ∪ (((a
→2 b) ∩ (c →2 b)) ∪ ((a
→2 c) ∩ (b →2 c)))) = (((a
→2 b) ∩ (c →2 b)) ∪ ((a
→2 c) ∩ (b →2 c))) |
| 37 | 13, 36 | ax-r2 36 |
. . . . 5
((c ∪ b) ∪ (((a
→2 b) ∩ (c →2 b)) ∪ ((a
→2 c) ∩ (b →2 c)))) = (((a
→2 b) ∩ (c →2 b)) ∪ ((a
→2 c) ∩ (b →2 c))) |
| 38 | 11, 37 | ax-r2 36 |
. . . 4
((c ∪ ((a →2 b) ∩ (c
→2 b))) ∪ (b ∪ ((a
→2 c) ∩ (b →2 c)))) = (((a
→2 b) ∩ (c →2 b)) ∪ ((a
→2 c) ∩ (b →2 c))) |
| 39 | 10, 38 | ax-r2 36 |
. . 3
(((a →2 b)⊥ →2 (b ∪ c))
∪ ((a →2 c)⊥ →2 (b ∪ c))) =
(((a →2 b) ∩ (c
→2 b)) ∪ ((a →2 c) ∩ (b
→2 c))) |
| 40 | 4, 39 | ax-r2 36 |
. 2
(((a →2 b)⊥ →2 (b ∪ c))
∪ ((a →2 b)⊥ →2 (b ∪ c))) =
(((a →2 b) ∩ (c
→2 b)) ∪ ((a →2 c) ∩ (b
→2 c))) |
| 41 | 2, 40 | ax-r2 36 |
1
((a →2 b)⊥ →2 (b ∪ c)) =
(((a →2 b) ∩ (c
→2 b)) ∪ ((a →2 c) ∩ (b
→2 c))) |