Proof of Theorem 3vth5
Step | Hyp | Ref
| Expression |
1 | | ax-a3 32 |
. . 3
((b ∪ c) ∪ ((b
∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ c)⊥ )) = (b ∪ (c ∪
((b ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ c)⊥ ))) |
2 | | or12 80 |
. . . 4
(b ∪ (c ∪ ((b
∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ c)⊥ ))) = (c ∪ (b ∪
((b ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ c)⊥ ))) |
3 | | comorr 184 |
. . . . . . 7
b C (b ∪ (a⊥ ∩ b⊥ )) |
4 | | comorr 184 |
. . . . . . . 8
b C (b ∪ c) |
5 | 4 | comcom2 183 |
. . . . . . 7
b C (b ∪ c)⊥ |
6 | 3, 5 | fh3 471 |
. . . . . 6
(b ∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ c)⊥ )) = ((b ∪ (b ∪
(a⊥ ∩ b⊥ ))) ∩ (b ∪ (b ∪
c)⊥ )) |
7 | | ax-a3 32 |
. . . . . . . . 9
((b ∪ b) ∪ (a⊥ ∩ b⊥ )) = (b ∪ (b ∪
(a⊥ ∩ b⊥ ))) |
8 | 7 | ax-r1 35 |
. . . . . . . 8
(b ∪ (b ∪ (a⊥ ∩ b⊥ ))) = ((b ∪ b) ∪
(a⊥ ∩ b⊥ )) |
9 | | oridm 110 |
. . . . . . . . 9
(b ∪ b) = b |
10 | 9 | ax-r5 38 |
. . . . . . . 8
((b ∪ b) ∪ (a⊥ ∩ b⊥ )) = (b ∪ (a⊥ ∩ b⊥ )) |
11 | 8, 10 | ax-r2 36 |
. . . . . . 7
(b ∪ (b ∪ (a⊥ ∩ b⊥ ))) = (b ∪ (a⊥ ∩ b⊥ )) |
12 | | ancom 74 |
. . . . . . . . . 10
(c⊥ ∩ b⊥ ) = (b⊥ ∩ c⊥ ) |
13 | | anor3 90 |
. . . . . . . . . 10
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
14 | 12, 13 | ax-r2 36 |
. . . . . . . . 9
(c⊥ ∩ b⊥ ) = (b ∪ c)⊥ |
15 | 14 | ax-r1 35 |
. . . . . . . 8
(b ∪ c)⊥ = (c⊥ ∩ b⊥ ) |
16 | 15 | lor 70 |
. . . . . . 7
(b ∪ (b ∪ c)⊥ ) = (b ∪ (c⊥ ∩ b⊥ )) |
17 | 11, 16 | 2an 79 |
. . . . . 6
((b ∪ (b ∪ (a⊥ ∩ b⊥ ))) ∩ (b ∪ (b ∪
c)⊥ )) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (c⊥ ∩ b⊥ ))) |
18 | 6, 17 | ax-r2 36 |
. . . . 5
(b ∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ c)⊥ )) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (c⊥ ∩ b⊥ ))) |
19 | 18 | lor 70 |
. . . 4
(c ∪ (b ∪ ((b
∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ c)⊥ ))) = (c ∪ ((b
∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (c⊥ ∩ b⊥ )))) |
20 | 2, 19 | ax-r2 36 |
. . 3
(b ∪ (c ∪ ((b
∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ c)⊥ ))) = (c ∪ ((b
∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (c⊥ ∩ b⊥ )))) |
21 | 1, 20 | ax-r2 36 |
. 2
((b ∪ c) ∪ ((b
∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ c)⊥ )) = (c ∪ ((b
∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (c⊥ ∩ b⊥ )))) |
22 | | df-i2 45 |
. . 3
((a →2 b)⊥ →2 (b ∪ c)) =
((b ∪ c) ∪ ((a
→2 b)⊥
⊥ ∩ (b ∪ c)⊥ )) |
23 | | df-i2 45 |
. . . . . . . 8
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
24 | 23 | ax-r1 35 |
. . . . . . 7
(b ∪ (a⊥ ∩ b⊥ )) = (a →2 b) |
25 | | ax-a1 30 |
. . . . . . 7
(a →2 b) = (a
→2 b)⊥
⊥ |
26 | 24, 25 | ax-r2 36 |
. . . . . 6
(b ∪ (a⊥ ∩ b⊥ )) = (a →2 b)⊥
⊥ |
27 | 26 | ran 78 |
. . . . 5
((b ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ c)⊥ ) = ((a →2 b)⊥ ⊥ ∩
(b ∪ c)⊥ ) |
28 | 27 | lor 70 |
. . . 4
((b ∪ c) ∪ ((b
∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ c)⊥ )) = ((b ∪ c) ∪
((a →2 b)⊥ ⊥ ∩
(b ∪ c)⊥ )) |
29 | 28 | ax-r1 35 |
. . 3
((b ∪ c) ∪ ((a
→2 b)⊥
⊥ ∩ (b ∪ c)⊥ )) = ((b ∪ c) ∪
((b ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ c)⊥ )) |
30 | 22, 29 | ax-r2 36 |
. 2
((a →2 b)⊥ →2 (b ∪ c)) =
((b ∪ c) ∪ ((b
∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ c)⊥ )) |
31 | | df-i2 45 |
. . . 4
(c →2 b) = (b ∪
(c⊥ ∩ b⊥ )) |
32 | 23, 31 | 2an 79 |
. . 3
((a →2 b) ∩ (c
→2 b)) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (c⊥ ∩ b⊥ ))) |
33 | 32 | lor 70 |
. 2
(c ∪ ((a →2 b) ∩ (c
→2 b))) = (c ∪ ((b
∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (c⊥ ∩ b⊥ )))) |
34 | 21, 30, 33 | 3tr1 63 |
1
((a →2 b)⊥ →2 (b ∪ c)) =
(c ∪ ((a →2 b) ∩ (c
→2 b))) |