Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > 3vth8 | GIF version |
Description: A 3-variable theorem. (Contributed by NM, 18-Oct-1998.) |
Ref | Expression |
---|---|
3vth8 | (a →2 (b ∪ c)) = (((a →2 b) ∩ (c →2 b)) ∪ ((a →2 c) ∩ (b →2 c))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3vth7 810 | . . 3 ((a →2 b)⊥ →2 (b ∪ c)) = (a →2 (b ∪ c)) | |
2 | 1 | ax-r1 35 | . 2 (a →2 (b ∪ c)) = ((a →2 b)⊥ →2 (b ∪ c)) |
3 | 3vth6 809 | . 2 ((a →2 b)⊥ →2 (b ∪ c)) = (((a →2 b) ∩ (c →2 b)) ∪ ((a →2 c) ∩ (b →2 c))) | |
4 | 2, 3 | ax-r2 36 | 1 (a →2 (b ∪ c)) = (((a →2 b) ∩ (c →2 b)) ∪ ((a →2 c) ∩ (b →2 c))) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |