Proof of Theorem 3vth9
Step | Hyp | Ref
| Expression |
1 | | anor3 90 |
. . . 4
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
2 | 1 | ax-r1 35 |
. . 3
(a ∪ b)⊥ = (a⊥ ∩ b⊥ ) |
3 | | df-i2 45 |
. . . 4
(c →2 b) = (b ∪
(c⊥ ∩ b⊥ )) |
4 | 3 | lan 77 |
. . 3
((a ∪ b) ∩ (c
→2 b)) = ((a ∪ b) ∩
(b ∪ (c⊥ ∩ b⊥ ))) |
5 | 2, 4 | 2or 72 |
. 2
((a ∪ b)⊥ ∪ ((a ∪ b) ∩
(c →2 b))) = ((a⊥ ∩ b⊥ ) ∪ ((a ∪ b) ∩
(b ∪ (c⊥ ∩ b⊥ )))) |
6 | | df-i1 44 |
. 2
((a ∪ b) →1 (c →2 b)) = ((a ∪
b)⊥ ∪ ((a ∪ b) ∩
(c →2 b))) |
7 | | df-i2 45 |
. . . 4
((b ∪ c) →2 (a →2 b)) = ((a
→2 b) ∪ ((b ∪ c)⊥ ∩ (a →2 b)⊥ )) |
8 | | df-i2 45 |
. . . . 5
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
9 | | anor3 90 |
. . . . . . . 8
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
10 | 9 | ax-r1 35 |
. . . . . . 7
(b ∪ c)⊥ = (b⊥ ∩ c⊥ ) |
11 | | ud2lem0c 278 |
. . . . . . 7
(a →2 b)⊥ = (b⊥ ∩ (a ∪ b)) |
12 | 10, 11 | 2an 79 |
. . . . . 6
((b ∪ c)⊥ ∩ (a →2 b)⊥ ) = ((b⊥ ∩ c⊥ ) ∩ (b⊥ ∩ (a ∪ b))) |
13 | | anandi 114 |
. . . . . . . 8
(b⊥ ∩ (c⊥ ∩ (a ∪ b))) =
((b⊥ ∩ c⊥ ) ∩ (b⊥ ∩ (a ∪ b))) |
14 | 13 | ax-r1 35 |
. . . . . . 7
((b⊥ ∩ c⊥ ) ∩ (b⊥ ∩ (a ∪ b))) =
(b⊥ ∩ (c⊥ ∩ (a ∪ b))) |
15 | | anass 76 |
. . . . . . . 8
((b⊥ ∩ c⊥ ) ∩ (a ∪ b)) =
(b⊥ ∩ (c⊥ ∩ (a ∪ b))) |
16 | 15 | ax-r1 35 |
. . . . . . 7
(b⊥ ∩ (c⊥ ∩ (a ∪ b))) =
((b⊥ ∩ c⊥ ) ∩ (a ∪ b)) |
17 | 14, 16 | ax-r2 36 |
. . . . . 6
((b⊥ ∩ c⊥ ) ∩ (b⊥ ∩ (a ∪ b))) =
((b⊥ ∩ c⊥ ) ∩ (a ∪ b)) |
18 | 12, 17 | ax-r2 36 |
. . . . 5
((b ∪ c)⊥ ∩ (a →2 b)⊥ ) = ((b⊥ ∩ c⊥ ) ∩ (a ∪ b)) |
19 | 8, 18 | 2or 72 |
. . . 4
((a →2 b) ∪ ((b
∪ c)⊥ ∩ (a →2 b)⊥ )) = ((b ∪ (a⊥ ∩ b⊥ )) ∪ ((b⊥ ∩ c⊥ ) ∩ (a ∪ b))) |
20 | 7, 19 | ax-r2 36 |
. . 3
((b ∪ c) →2 (a →2 b)) = ((b ∪
(a⊥ ∩ b⊥ )) ∪ ((b⊥ ∩ c⊥ ) ∩ (a ∪ b))) |
21 | | or32 82 |
. . . 4
((b ∪ (a⊥ ∩ b⊥ )) ∪ ((b⊥ ∩ c⊥ ) ∩ (a ∪ b))) =
((b ∪ ((b⊥ ∩ c⊥ ) ∩ (a ∪ b)))
∪ (a⊥ ∩ b⊥ )) |
22 | | comanr1 464 |
. . . . . . . . 9
b⊥ C
(b⊥ ∩ c⊥ ) |
23 | 22 | comcom6 459 |
. . . . . . . 8
b C (b⊥ ∩ c⊥ ) |
24 | | comorr2 463 |
. . . . . . . 8
b C (a ∪ b) |
25 | 23, 24 | fh3 471 |
. . . . . . 7
(b ∪ ((b⊥ ∩ c⊥ ) ∩ (a ∪ b))) =
((b ∪ (b⊥ ∩ c⊥ )) ∩ (b ∪ (a ∪
b))) |
26 | | ancom 74 |
. . . . . . . . . 10
(b⊥ ∩ c⊥ ) = (c⊥ ∩ b⊥ ) |
27 | 26 | lor 70 |
. . . . . . . . 9
(b ∪ (b⊥ ∩ c⊥ )) = (b ∪ (c⊥ ∩ b⊥ )) |
28 | | or12 80 |
. . . . . . . . . 10
(b ∪ (a ∪ b)) =
(a ∪ (b ∪ b)) |
29 | | oridm 110 |
. . . . . . . . . . 11
(b ∪ b) = b |
30 | 29 | lor 70 |
. . . . . . . . . 10
(a ∪ (b ∪ b)) =
(a ∪ b) |
31 | 28, 30 | ax-r2 36 |
. . . . . . . . 9
(b ∪ (a ∪ b)) =
(a ∪ b) |
32 | 27, 31 | 2an 79 |
. . . . . . . 8
((b ∪ (b⊥ ∩ c⊥ )) ∩ (b ∪ (a ∪
b))) = ((b ∪ (c⊥ ∩ b⊥ )) ∩ (a ∪ b)) |
33 | | ancom 74 |
. . . . . . . 8
((b ∪ (c⊥ ∩ b⊥ )) ∩ (a ∪ b)) =
((a ∪ b) ∩ (b
∪ (c⊥ ∩ b⊥ ))) |
34 | 32, 33 | ax-r2 36 |
. . . . . . 7
((b ∪ (b⊥ ∩ c⊥ )) ∩ (b ∪ (a ∪
b))) = ((a ∪ b) ∩
(b ∪ (c⊥ ∩ b⊥ ))) |
35 | 25, 34 | ax-r2 36 |
. . . . . 6
(b ∪ ((b⊥ ∩ c⊥ ) ∩ (a ∪ b))) =
((a ∪ b) ∩ (b
∪ (c⊥ ∩ b⊥ ))) |
36 | 35 | ax-r5 38 |
. . . . 5
((b ∪ ((b⊥ ∩ c⊥ ) ∩ (a ∪ b)))
∪ (a⊥ ∩ b⊥ )) = (((a ∪ b) ∩
(b ∪ (c⊥ ∩ b⊥ ))) ∪ (a⊥ ∩ b⊥ )) |
37 | | ax-a2 31 |
. . . . 5
(((a ∪ b) ∩ (b
∪ (c⊥ ∩ b⊥ ))) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ ((a ∪ b) ∩
(b ∪ (c⊥ ∩ b⊥ )))) |
38 | 36, 37 | ax-r2 36 |
. . . 4
((b ∪ ((b⊥ ∩ c⊥ ) ∩ (a ∪ b)))
∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ ((a ∪ b) ∩
(b ∪ (c⊥ ∩ b⊥ )))) |
39 | 21, 38 | ax-r2 36 |
. . 3
((b ∪ (a⊥ ∩ b⊥ )) ∪ ((b⊥ ∩ c⊥ ) ∩ (a ∪ b))) =
((a⊥ ∩ b⊥ ) ∪ ((a ∪ b) ∩
(b ∪ (c⊥ ∩ b⊥ )))) |
40 | 20, 39 | ax-r2 36 |
. 2
((b ∪ c) →2 (a →2 b)) = ((a⊥ ∩ b⊥ ) ∪ ((a ∪ b) ∩
(b ∪ (c⊥ ∩ b⊥ )))) |
41 | 5, 6, 40 | 3tr1 63 |
1
((a ∪ b) →1 (c →2 b)) = ((b ∪
c) →2 (a →2 b)) |