Proof of Theorem 3vth7
| Step | Hyp | Ref
| Expression |
| 1 | | df-i2 45 |
. . . . 5
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
| 2 | | df-i2 45 |
. . . . 5
(c →2 b) = (b ∪
(c⊥ ∩ b⊥ )) |
| 3 | 1, 2 | 2an 79 |
. . . 4
((a →2 b) ∩ (c
→2 b)) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (c⊥ ∩ b⊥ ))) |
| 4 | | anass 76 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = (a⊥ ∩ (b⊥ ∩ c⊥ )) |
| 5 | 4 | ax-r1 35 |
. . . . . . . . 9
(a⊥ ∩ (b⊥ ∩ c⊥ )) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
| 6 | | anor3 90 |
. . . . . . . . . 10
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
| 7 | 6 | lan 77 |
. . . . . . . . 9
(a⊥ ∩ (b⊥ ∩ c⊥ )) = (a⊥ ∩ (b ∪ c)⊥ ) |
| 8 | | an32 83 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = ((a⊥ ∩ c⊥ ) ∩ b⊥ ) |
| 9 | 5, 7, 8 | 3tr2 64 |
. . . . . . . 8
(a⊥ ∩ (b ∪ c)⊥ ) = ((a⊥ ∩ c⊥ ) ∩ b⊥ ) |
| 10 | | anidm 111 |
. . . . . . . . . 10
(b⊥ ∩ b⊥ ) = b⊥ |
| 11 | 10 | lan 77 |
. . . . . . . . 9
((a⊥ ∩ c⊥ ) ∩ (b⊥ ∩ b⊥ )) = ((a⊥ ∩ c⊥ ) ∩ b⊥ ) |
| 12 | 11 | ax-r1 35 |
. . . . . . . 8
((a⊥ ∩ c⊥ ) ∩ b⊥ ) = ((a⊥ ∩ c⊥ ) ∩ (b⊥ ∩ b⊥ )) |
| 13 | | an4 86 |
. . . . . . . 8
((a⊥ ∩ c⊥ ) ∩ (b⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ b⊥ )) |
| 14 | 9, 12, 13 | 3tr 65 |
. . . . . . 7
(a⊥ ∩ (b ∪ c)⊥ ) = ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ b⊥ )) |
| 15 | 14 | lor 70 |
. . . . . 6
(b ∪ (a⊥ ∩ (b ∪ c)⊥ )) = (b ∪ ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ b⊥ ))) |
| 16 | | comanr2 465 |
. . . . . . . 8
b⊥ C
(a⊥ ∩ b⊥ ) |
| 17 | 16 | comcom6 459 |
. . . . . . 7
b C (a⊥ ∩ b⊥ ) |
| 18 | | comanr2 465 |
. . . . . . . 8
b⊥ C
(c⊥ ∩ b⊥ ) |
| 19 | 18 | comcom6 459 |
. . . . . . 7
b C (c⊥ ∩ b⊥ ) |
| 20 | 17, 19 | fh3 471 |
. . . . . 6
(b ∪ ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ b⊥ ))) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (c⊥ ∩ b⊥ ))) |
| 21 | 15, 20 | ax-r2 36 |
. . . . 5
(b ∪ (a⊥ ∩ (b ∪ c)⊥ )) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (c⊥ ∩ b⊥ ))) |
| 22 | 21 | ax-r1 35 |
. . . 4
((b ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (c⊥ ∩ b⊥ ))) = (b ∪ (a⊥ ∩ (b ∪ c)⊥ )) |
| 23 | 3, 22 | ax-r2 36 |
. . 3
((a →2 b) ∩ (c
→2 b)) = (b ∪ (a⊥ ∩ (b ∪ c)⊥ )) |
| 24 | 23 | lor 70 |
. 2
(c ∪ ((a →2 b) ∩ (c
→2 b))) = (c ∪ (b ∪
(a⊥ ∩ (b ∪ c)⊥ ))) |
| 25 | | 3vth5 808 |
. 2
((a →2 b)⊥ →2 (b ∪ c)) =
(c ∪ ((a →2 b) ∩ (c
→2 b))) |
| 26 | | df-i2 45 |
. . 3
(a →2 (b ∪ c)) =
((b ∪ c) ∪ (a⊥ ∩ (b ∪ c)⊥ )) |
| 27 | | ax-a3 32 |
. . 3
((b ∪ c) ∪ (a⊥ ∩ (b ∪ c)⊥ )) = (b ∪ (c ∪
(a⊥ ∩ (b ∪ c)⊥ ))) |
| 28 | | or12 80 |
. . 3
(b ∪ (c ∪ (a⊥ ∩ (b ∪ c)⊥ ))) = (c ∪ (b ∪
(a⊥ ∩ (b ∪ c)⊥ ))) |
| 29 | 26, 27, 28 | 3tr 65 |
. 2
(a →2 (b ∪ c)) =
(c ∪ (b ∪ (a⊥ ∩ (b ∪ c)⊥ ))) |
| 30 | 24, 25, 29 | 3tr1 63 |
1
((a →2 b)⊥ →2 (b ∪ c)) =
(a →2 (b ∪ c)) |