Proof of Theorem axoa4a
| Step | Hyp | Ref
| Expression |
| 1 | | id 59 |
. 2
(a →1 d)⊥ = (a →1 d)⊥ |
| 2 | | id 59 |
. 2
(b →1 d)⊥ = (b →1 d)⊥ |
| 3 | | id 59 |
. 2
(c →1 d)⊥ = (c →1 d)⊥ |
| 4 | | leo 158 |
. . . 4
a⊥ ≤ (a⊥ ∪ (a ∩ d)) |
| 5 | | df-i1 44 |
. . . . . 6
(a →1 d) = (a⊥ ∪ (a ∩ d)) |
| 6 | 5 | ax-r1 35 |
. . . . 5
(a⊥ ∪ (a ∩ d)) =
(a →1 d) |
| 7 | | ax-a1 30 |
. . . . 5
(a →1 d) = (a
→1 d)⊥
⊥ |
| 8 | 6, 7 | ax-r2 36 |
. . . 4
(a⊥ ∪ (a ∩ d)) =
(a →1 d)⊥
⊥ |
| 9 | 4, 8 | lbtr 139 |
. . 3
a⊥ ≤ (a →1 d)⊥
⊥ |
| 10 | | leo 158 |
. . . 4
b⊥ ≤ (b⊥ ∪ (b ∩ d)) |
| 11 | | df-i1 44 |
. . . . . 6
(b →1 d) = (b⊥ ∪ (b ∩ d)) |
| 12 | 11 | ax-r1 35 |
. . . . 5
(b⊥ ∪ (b ∩ d)) =
(b →1 d) |
| 13 | | ax-a1 30 |
. . . . 5
(b →1 d) = (b
→1 d)⊥
⊥ |
| 14 | 12, 13 | ax-r2 36 |
. . . 4
(b⊥ ∪ (b ∩ d)) =
(b →1 d)⊥
⊥ |
| 15 | 10, 14 | lbtr 139 |
. . 3
b⊥ ≤ (b →1 d)⊥
⊥ |
| 16 | | leo 158 |
. . . 4
c⊥ ≤ (c⊥ ∪ (c ∩ d)) |
| 17 | | df-i1 44 |
. . . . . 6
(c →1 d) = (c⊥ ∪ (c ∩ d)) |
| 18 | 17 | ax-r1 35 |
. . . . 5
(c⊥ ∪ (c ∩ d)) =
(c →1 d) |
| 19 | | ax-a1 30 |
. . . . 5
(c →1 d) = (c
→1 d)⊥
⊥ |
| 20 | 18, 19 | ax-r2 36 |
. . . 4
(c⊥ ∪ (c ∩ d)) =
(c →1 d)⊥
⊥ |
| 21 | 16, 20 | lbtr 139 |
. . 3
c⊥ ≤ (c →1 d)⊥
⊥ |
| 22 | 9, 15, 21 | oa6 1036 |
. 2
(((a⊥ ∪
(a →1 d)⊥ ) ∩ (b⊥ ∪ (b →1 d)⊥ )) ∩ (c⊥ ∪ (c →1 d)⊥ )) ≤ ((a →1 d)⊥ ∪ (a⊥ ∩ (b⊥ ∪ (((a⊥ ∪ b⊥ ) ∩ ((a →1 d)⊥ ∪ (b →1 d)⊥ )) ∩ (((a⊥ ∪ c⊥ ) ∩ ((a →1 d)⊥ ∪ (c →1 d)⊥ )) ∪ ((b⊥ ∪ c⊥ ) ∩ ((b →1 d)⊥ ∪ (c →1 d)⊥ ))))))) |
| 23 | 1, 2, 3, 22 | oa6to4 958 |
1
((a →1 d) ∩ (a
∪ (b ∩ (((a ∩ b) ∪
((a →1 d) ∩ (b
→1 d))) ∪ (((a ∩ c) ∪
((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c) ∪
((b →1 d) ∩ (c
→1 d)))))))) ≤
(((a ∩ d) ∪ (b
∩ d)) ∪ (c ∩ d)) |