![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > oa6 | GIF version |
Description: Derivation of 6-variable orthoarguesian law from 4-variable version. (Contributed by NM, 18-Dec-1998.) |
Ref | Expression |
---|---|
oa6.1 | a ≤ b⊥ |
oa6.2 | c ≤ d⊥ |
oa6.3 | e ≤ f⊥ |
Ref | Expression |
---|---|
oa6 | (((a ∪ b) ∩ (c ∪ d)) ∩ (e ∪ f)) ≤ (b ∪ (a ∩ (c ∪ (((a ∪ c) ∩ (b ∪ d)) ∩ (((a ∪ e) ∩ (b ∪ f)) ∪ ((c ∪ e) ∩ (d ∪ f))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oa6.1 | . 2 a ≤ b⊥ | |
2 | oa6.2 | . 2 c ≤ d⊥ | |
3 | oa6.3 | . 2 e ≤ f⊥ | |
4 | id 59 | . 2 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )) = (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )) | |
5 | id 59 | . 2 a⊥ = a⊥ | |
6 | id 59 | . 2 c⊥ = c⊥ | |
7 | id 59 | . 2 e⊥ = e⊥ | |
8 | axoa4b 1035 | . 2 ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) ∪ (((a⊥ ∩ e⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) ∩ ((c⊥ ∩ e⊥ ) ∪ ((c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )))))))))) ≤ (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | oa4to6 965 | 1 (((a ∪ b) ∩ (c ∪ d)) ∩ (e ∪ f)) ≤ (b ∪ (a ∩ (c ∪ (((a ∪ c) ∩ (b ∪ d)) ∩ (((a ∪ e) ∩ (b ∪ f)) ∪ ((c ∪ e) ∩ (d ∪ f))))))) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 ax-4oa 1033 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: axoa4a 1037 |
Copyright terms: Public domain | W3C validator |