QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  bi3tr GIF version

Theorem bi3tr 527
Description: Transitive inference. (Contributed by NM, 7-Nov-1997.)
Hypotheses
Ref Expression
bi3tr.1 a = b
bi3tr.2 (b3 c) = 1
Assertion
Ref Expression
bi3tr (a3 c) = 1

Proof of Theorem bi3tr
StepHypRef Expression
1 bi3tr.2 . 2 (b3 c) = 1
2 bi3tr.1 . . . 4 a = b
32ri3 253 . . 3 (a3 c) = (b3 c)
43bi1 118 . 2 ((a3 c) ≡ (b3 c)) = 1
51, 4wwbmpr 206 1 (a3 c) = 1
Colors of variables: term
Syntax hints:   = wb 1  1wt 8  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i3 46
This theorem is referenced by:  i33tr1  529
  Copyright terms: Public domain W3C validator