Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > bii3 | GIF version |
Description: Biconditional implies Kalmbach implication. (Contributed by NM, 9-Nov-1997.) |
Ref | Expression |
---|---|
bii3 | ((a ≡ b) →3 (a →3 b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i3bi 496 | . . . 4 ((a →3 b) ∩ (b →3 a)) = (a ≡ b) | |
2 | 1 | ax-r1 35 | . . 3 (a ≡ b) = ((a →3 b) ∩ (b →3 a)) |
3 | lea 160 | . . 3 ((a →3 b) ∩ (b →3 a)) ≤ (a →3 b) | |
4 | 2, 3 | bltr 138 | . 2 (a ≡ b) ≤ (a →3 b) |
5 | 4 | lei3 246 | 1 ((a ≡ b) →3 (a →3 b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ≡ tb 5 ∩ wa 7 1wt 8 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: i3th6 548 |
Copyright terms: Public domain | W3C validator |