Proof of Theorem i3bi
Step | Hyp | Ref
| Expression |
1 | | anor2 89 |
. . . . . . 7
(b⊥ ∩ a) = (b ∪
a⊥
)⊥ |
2 | | lea 160 |
. . . . . . . . . . . . 13
(a⊥ ∩ b) ≤ a⊥ |
3 | | leo 158 |
. . . . . . . . . . . . . 14
a⊥ ≤ (a⊥ ∪ b) |
4 | | ax-a2 31 |
. . . . . . . . . . . . . 14
(a⊥ ∪ b) = (b ∪
a⊥ ) |
5 | 3, 4 | lbtr 139 |
. . . . . . . . . . . . 13
a⊥ ≤ (b ∪ a⊥ ) |
6 | 2, 5 | letr 137 |
. . . . . . . . . . . 12
(a⊥ ∩ b) ≤ (b ∪
a⊥ ) |
7 | | lea 160 |
. . . . . . . . . . . . 13
((a⊥ ∪ b) ∩ a) ≤
(a⊥ ∪ b) |
8 | | ancom 74 |
. . . . . . . . . . . . 13
(a ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ a) |
9 | | ax-a2 31 |
. . . . . . . . . . . . 13
(b ∪ a⊥ ) = (a⊥ ∪ b) |
10 | 7, 8, 9 | le3tr1 140 |
. . . . . . . . . . . 12
(a ∩ (a⊥ ∪ b)) ≤ (b
∪ a⊥
) |
11 | 6, 10 | le2or 168 |
. . . . . . . . . . 11
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ≤ ((b
∪ a⊥ ) ∪ (b ∪ a⊥ )) |
12 | | oridm 110 |
. . . . . . . . . . 11
((b ∪ a⊥ ) ∪ (b ∪ a⊥ )) = (b ∪ a⊥ ) |
13 | 11, 12 | lbtr 139 |
. . . . . . . . . 10
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ≤ (b
∪ a⊥
) |
14 | 13 | lecom 180 |
. . . . . . . . 9
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) C (b
∪ a⊥
) |
15 | 14 | comcom2 183 |
. . . . . . . 8
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) C (b
∪ a⊥
)⊥ |
16 | 15 | comcom 453 |
. . . . . . 7
(b ∪ a⊥ )⊥ C
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
17 | 1, 16 | bctr 181 |
. . . . . 6
(b⊥ ∩ a) C ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
18 | | lea 160 |
. . . . . . . . . . 11
(b ∩ (b⊥ ∪ a)) ≤ b |
19 | | leo 158 |
. . . . . . . . . . 11
b ≤ (b ∪ a⊥ ) |
20 | 18, 19 | letr 137 |
. . . . . . . . . 10
(b ∩ (b⊥ ∪ a)) ≤ (b
∪ a⊥
) |
21 | 20 | lecom 180 |
. . . . . . . . 9
(b ∩ (b⊥ ∪ a)) C (b
∪ a⊥
) |
22 | 21 | comcom2 183 |
. . . . . . . 8
(b ∩ (b⊥ ∪ a)) C (b
∪ a⊥
)⊥ |
23 | 22 | comcom 453 |
. . . . . . 7
(b ∪ a⊥ )⊥ C
(b ∩ (b⊥ ∪ a)) |
24 | 1, 23 | bctr 181 |
. . . . . 6
(b⊥ ∩ a) C (b
∩ (b⊥ ∪ a)) |
25 | 17, 24 | fh2 470 |
. . . . 5
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a)))) = ((((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∩ (b⊥ ∩ a)) ∪ (((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∩ (b
∩ (b⊥ ∪ a)))) |
26 | | ancom 74 |
. . . . . . . 8
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ (b⊥ ∩ a)) = ((b⊥ ∩ a) ∩ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) |
27 | | lea 160 |
. . . . . . . . . . . . . 14
(b⊥ ∩ a) ≤ b⊥ |
28 | | leo 158 |
. . . . . . . . . . . . . 14
b⊥ ≤ (b⊥ ∪ a) |
29 | 27, 28 | letr 137 |
. . . . . . . . . . . . 13
(b⊥ ∩ a) ≤ (b⊥ ∪ a) |
30 | 29 | lecom 180 |
. . . . . . . . . . . 12
(b⊥ ∩ a) C (b⊥ ∪ a) |
31 | 30 | comcom2 183 |
. . . . . . . . . . 11
(b⊥ ∩ a) C (b⊥ ∪ a)⊥ |
32 | | ancom 74 |
. . . . . . . . . . . . 13
(a⊥ ∩ b) = (b ∩
a⊥ ) |
33 | | anor1 88 |
. . . . . . . . . . . . 13
(b ∩ a⊥ ) = (b⊥ ∪ a)⊥ |
34 | 32, 33 | ax-r2 36 |
. . . . . . . . . . . 12
(a⊥ ∩ b) = (b⊥ ∪ a)⊥ |
35 | 34 | ax-r1 35 |
. . . . . . . . . . 11
(b⊥ ∪ a)⊥ = (a⊥ ∩ b) |
36 | 31, 35 | cbtr 182 |
. . . . . . . . . 10
(b⊥ ∩ a) C (a⊥ ∩ b) |
37 | | ancom 74 |
. . . . . . . . . . . 12
(b⊥ ∩ a) = (a ∩
b⊥ ) |
38 | | anor1 88 |
. . . . . . . . . . . 12
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
39 | 37, 38 | ax-r2 36 |
. . . . . . . . . . 11
(b⊥ ∩ a) = (a⊥ ∪ b)⊥ |
40 | 8, 7 | bltr 138 |
. . . . . . . . . . . . . 14
(a ∩ (a⊥ ∪ b)) ≤ (a⊥ ∪ b) |
41 | 40 | lecom 180 |
. . . . . . . . . . . . 13
(a ∩ (a⊥ ∪ b)) C (a⊥ ∪ b) |
42 | 41 | comcom2 183 |
. . . . . . . . . . . 12
(a ∩ (a⊥ ∪ b)) C (a⊥ ∪ b)⊥ |
43 | 42 | comcom 453 |
. . . . . . . . . . 11
(a⊥ ∪ b)⊥ C (a ∩ (a⊥ ∪ b)) |
44 | 39, 43 | bctr 181 |
. . . . . . . . . 10
(b⊥ ∩ a) C (a
∩ (a⊥ ∪ b)) |
45 | 36, 44 | fh1 469 |
. . . . . . . . 9
((b⊥ ∩ a) ∩ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = (((b⊥ ∩ a) ∩ (a⊥ ∩ b)) ∪ ((b⊥ ∩ a) ∩ (a
∩ (a⊥ ∪ b)))) |
46 | 37 | ran 78 |
. . . . . . . . . . . 12
((b⊥ ∩ a) ∩ (a⊥ ∩ b)) = ((a ∩
b⊥ ) ∩ (a⊥ ∩ b)) |
47 | | an4 86 |
. . . . . . . . . . . . 13
((a ∩ b⊥ ) ∩ (a⊥ ∩ b)) = ((a ∩
a⊥ ) ∩ (b⊥ ∩ b)) |
48 | | dff 101 |
. . . . . . . . . . . . . . . 16
0 = (a ∩ a⊥ ) |
49 | | dff 101 |
. . . . . . . . . . . . . . . . 17
0 = (b ∩ b⊥ ) |
50 | | ancom 74 |
. . . . . . . . . . . . . . . . 17
(b ∩ b⊥ ) = (b⊥ ∩ b) |
51 | 49, 50 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
0 = (b⊥ ∩
b) |
52 | 48, 51 | 2an 79 |
. . . . . . . . . . . . . . 15
(0 ∩ 0) = ((a ∩ a⊥ ) ∩ (b⊥ ∩ b)) |
53 | 52 | ax-r1 35 |
. . . . . . . . . . . . . 14
((a ∩ a⊥ ) ∩ (b⊥ ∩ b)) = (0 ∩ 0) |
54 | | anidm 111 |
. . . . . . . . . . . . . 14
(0 ∩ 0) = 0 |
55 | 53, 54 | ax-r2 36 |
. . . . . . . . . . . . 13
((a ∩ a⊥ ) ∩ (b⊥ ∩ b)) = 0 |
56 | 47, 55 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∩ b⊥ ) ∩ (a⊥ ∩ b)) = 0 |
57 | 46, 56 | ax-r2 36 |
. . . . . . . . . . 11
((b⊥ ∩ a) ∩ (a⊥ ∩ b)) = 0 |
58 | | an12 81 |
. . . . . . . . . . . 12
((b⊥ ∩ a) ∩ (a
∩ (a⊥ ∪ b))) = (a ∩
((b⊥ ∩ a) ∩ (a⊥ ∪ b))) |
59 | | dff 101 |
. . . . . . . . . . . . . . . 16
0 = ((b⊥ ∩
a) ∩ (b⊥ ∩ a)⊥ ) |
60 | 1 | con2 67 |
. . . . . . . . . . . . . . . . . 18
(b⊥ ∩ a)⊥ = (b ∪ a⊥ ) |
61 | 60, 9 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
(b⊥ ∩ a)⊥ = (a⊥ ∪ b) |
62 | 61 | lan 77 |
. . . . . . . . . . . . . . . 16
((b⊥ ∩ a) ∩ (b⊥ ∩ a)⊥ ) = ((b⊥ ∩ a) ∩ (a⊥ ∪ b)) |
63 | 59, 62 | ax-r2 36 |
. . . . . . . . . . . . . . 15
0 = ((b⊥ ∩
a) ∩ (a⊥ ∪ b)) |
64 | 63 | lan 77 |
. . . . . . . . . . . . . 14
(a ∩ 0) = (a ∩ ((b⊥ ∩ a) ∩ (a⊥ ∪ b))) |
65 | 64 | ax-r1 35 |
. . . . . . . . . . . . 13
(a ∩ ((b⊥ ∩ a) ∩ (a⊥ ∪ b))) = (a ∩
0) |
66 | | an0 108 |
. . . . . . . . . . . . 13
(a ∩ 0) = 0 |
67 | 65, 66 | ax-r2 36 |
. . . . . . . . . . . 12
(a ∩ ((b⊥ ∩ a) ∩ (a⊥ ∪ b))) = 0 |
68 | 58, 67 | ax-r2 36 |
. . . . . . . . . . 11
((b⊥ ∩ a) ∩ (a
∩ (a⊥ ∪ b))) = 0 |
69 | 57, 68 | 2or 72 |
. . . . . . . . . 10
(((b⊥ ∩
a) ∩ (a⊥ ∩ b)) ∪ ((b⊥ ∩ a) ∩ (a
∩ (a⊥ ∪ b)))) = (0 ∪ 0) |
70 | | oridm 110 |
. . . . . . . . . 10
(0 ∪ 0) = 0 |
71 | 69, 70 | ax-r2 36 |
. . . . . . . . 9
(((b⊥ ∩
a) ∩ (a⊥ ∩ b)) ∪ ((b⊥ ∩ a) ∩ (a
∩ (a⊥ ∪ b)))) = 0 |
72 | 45, 71 | ax-r2 36 |
. . . . . . . 8
((b⊥ ∩ a) ∩ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = 0 |
73 | 26, 72 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ (b⊥ ∩ a)) = 0 |
74 | | ancom 74 |
. . . . . . . 8
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ (b
∩ (b⊥ ∪ a))) = ((b ∩
(b⊥ ∪ a)) ∩ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) |
75 | | ancom 74 |
. . . . . . . . . . . . . . 15
(b ∩ (b⊥ ∪ a)) = ((b⊥ ∪ a) ∩ b) |
76 | | lea 160 |
. . . . . . . . . . . . . . 15
((b⊥ ∪ a) ∩ b) ≤
(b⊥ ∪ a) |
77 | 75, 76 | bltr 138 |
. . . . . . . . . . . . . 14
(b ∩ (b⊥ ∪ a)) ≤ (b⊥ ∪ a) |
78 | 77 | lecom 180 |
. . . . . . . . . . . . 13
(b ∩ (b⊥ ∪ a)) C (b⊥ ∪ a) |
79 | 78 | comcom2 183 |
. . . . . . . . . . . 12
(b ∩ (b⊥ ∪ a)) C (b⊥ ∪ a)⊥ |
80 | 79 | comcom 453 |
. . . . . . . . . . 11
(b⊥ ∪ a)⊥ C (b ∩ (b⊥ ∪ a)) |
81 | 34, 80 | bctr 181 |
. . . . . . . . . 10
(a⊥ ∩ b) C (b
∩ (b⊥ ∪ a)) |
82 | | anor2 89 |
. . . . . . . . . . 11
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
83 | | lea 160 |
. . . . . . . . . . . . . . 15
(a ∩ (a⊥ ∪ b)) ≤ a |
84 | | leo 158 |
. . . . . . . . . . . . . . 15
a ≤ (a ∪ b⊥ ) |
85 | 83, 84 | letr 137 |
. . . . . . . . . . . . . 14
(a ∩ (a⊥ ∪ b)) ≤ (a
∪ b⊥
) |
86 | 85 | lecom 180 |
. . . . . . . . . . . . 13
(a ∩ (a⊥ ∪ b)) C (a
∪ b⊥
) |
87 | 86 | comcom2 183 |
. . . . . . . . . . . 12
(a ∩ (a⊥ ∪ b)) C (a
∪ b⊥
)⊥ |
88 | 87 | comcom 453 |
. . . . . . . . . . 11
(a ∪ b⊥ )⊥ C
(a ∩ (a⊥ ∪ b)) |
89 | 82, 88 | bctr 181 |
. . . . . . . . . 10
(a⊥ ∩ b) C (a
∩ (a⊥ ∪ b)) |
90 | 81, 89 | fh2 470 |
. . . . . . . . 9
((b ∩ (b⊥ ∪ a)) ∩ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = (((b
∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b)) ∪ ((b
∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b)))) |
91 | | ax-a2 31 |
. . . . . . . . . 10
(((b ∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b)) ∪ ((b
∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b)))) = (((b
∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b))) ∪ ((b
∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b))) |
92 | | an4 86 |
. . . . . . . . . . . . 13
((b ∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b))) = ((b ∩
a) ∩ ((b⊥ ∪ a) ∩ (a⊥ ∪ b))) |
93 | | anandi 114 |
. . . . . . . . . . . . . 14
((b ∩ a) ∩ ((b⊥ ∪ a) ∩ (a⊥ ∪ b))) = (((b
∩ a) ∩ (b⊥ ∪ a)) ∩ ((b
∩ a) ∩ (a⊥ ∪ b))) |
94 | | coman1 185 |
. . . . . . . . . . . . . . . . . . 19
(b ∩ a) C b |
95 | 94 | comcom2 183 |
. . . . . . . . . . . . . . . . . 18
(b ∩ a) C b⊥ |
96 | | ancom 74 |
. . . . . . . . . . . . . . . . . . 19
(b ∩ a) = (a ∩
b) |
97 | | coman1 185 |
. . . . . . . . . . . . . . . . . . 19
(a ∩ b) C a |
98 | 96, 97 | bctr 181 |
. . . . . . . . . . . . . . . . . 18
(b ∩ a) C a |
99 | 95, 98 | fh1 469 |
. . . . . . . . . . . . . . . . 17
((b ∩ a) ∩ (b⊥ ∪ a)) = (((b ∩
a) ∩ b⊥ ) ∪ ((b ∩ a) ∩
a)) |
100 | | an32 83 |
. . . . . . . . . . . . . . . . . . . . 21
((b ∩ a) ∩ b⊥ ) = ((b ∩ b⊥ ) ∩ a) |
101 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . 22
((b ∩ b⊥ ) ∩ a) = (a ∩
(b ∩ b⊥ )) |
102 | 49 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . 24
(a ∩ 0) = (a ∩ (b ∩
b⊥ )) |
103 | 102 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . . . . . 23
(a ∩ (b ∩ b⊥ )) = (a ∩ 0) |
104 | 103, 66 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . . 22
(a ∩ (b ∩ b⊥ )) = 0 |
105 | 101, 104 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . 21
((b ∩ b⊥ ) ∩ a) = 0 |
106 | 100, 105 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . 20
((b ∩ a) ∩ b⊥ ) = 0 |
107 | | anass 76 |
. . . . . . . . . . . . . . . . . . . . 21
((b ∩ a) ∩ a) =
(b ∩ (a ∩ a)) |
108 | | anidm 111 |
. . . . . . . . . . . . . . . . . . . . . 22
(a ∩ a) = a |
109 | 108 | lan 77 |
. . . . . . . . . . . . . . . . . . . . 21
(b ∩ (a ∩ a)) =
(b ∩ a) |
110 | 107, 109 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . 20
((b ∩ a) ∩ a) =
(b ∩ a) |
111 | 106, 110 | 2or 72 |
. . . . . . . . . . . . . . . . . . 19
(((b ∩ a) ∩ b⊥ ) ∪ ((b ∩ a) ∩
a)) = (0 ∪ (b ∩ a)) |
112 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . 19
(0 ∪ (b ∩ a)) = ((b ∩
a) ∪ 0) |
113 | 111, 112 | ax-r2 36 |
. . . . . . . . . . . . . . . . . 18
(((b ∩ a) ∩ b⊥ ) ∪ ((b ∩ a) ∩
a)) = ((b ∩ a) ∪
0) |
114 | | or0 102 |
. . . . . . . . . . . . . . . . . 18
((b ∩ a) ∪ 0) = (b
∩ a) |
115 | 113, 114 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
(((b ∩ a) ∩ b⊥ ) ∪ ((b ∩ a) ∩
a)) = (b ∩ a) |
116 | 99, 115 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
((b ∩ a) ∩ (b⊥ ∪ a)) = (b ∩
a) |
117 | 98 | comcom2 183 |
. . . . . . . . . . . . . . . . . 18
(b ∩ a) C a⊥ |
118 | 117, 94 | fh1 469 |
. . . . . . . . . . . . . . . . 17
((b ∩ a) ∩ (a⊥ ∪ b)) = (((b ∩
a) ∩ a⊥ ) ∪ ((b ∩ a) ∩
b)) |
119 | | anass 76 |
. . . . . . . . . . . . . . . . . . . . 21
((b ∩ a) ∩ a⊥ ) = (b ∩ (a ∩
a⊥ )) |
120 | 48 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . 23
(b ∩ 0) = (b ∩ (a ∩
a⊥ )) |
121 | 120 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . . . . 22
(b ∩ (a ∩ a⊥ )) = (b ∩ 0) |
122 | | an0 108 |
. . . . . . . . . . . . . . . . . . . . . 22
(b ∩ 0) = 0 |
123 | 121, 122 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . 21
(b ∩ (a ∩ a⊥ )) = 0 |
124 | 119, 123 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . 20
((b ∩ a) ∩ a⊥ ) = 0 |
125 | | an32 83 |
. . . . . . . . . . . . . . . . . . . . 21
((b ∩ a) ∩ b) =
((b ∩ b) ∩ a) |
126 | | anidm 111 |
. . . . . . . . . . . . . . . . . . . . . 22
(b ∩ b) = b |
127 | 126 | ran 78 |
. . . . . . . . . . . . . . . . . . . . 21
((b ∩ b) ∩ a) =
(b ∩ a) |
128 | 125, 127 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . 20
((b ∩ a) ∩ b) =
(b ∩ a) |
129 | 124, 128 | 2or 72 |
. . . . . . . . . . . . . . . . . . 19
(((b ∩ a) ∩ a⊥ ) ∪ ((b ∩ a) ∩
b)) = (0 ∪ (b ∩ a)) |
130 | 129, 112 | ax-r2 36 |
. . . . . . . . . . . . . . . . . 18
(((b ∩ a) ∩ a⊥ ) ∪ ((b ∩ a) ∩
b)) = ((b ∩ a) ∪
0) |
131 | 130, 114 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
(((b ∩ a) ∩ a⊥ ) ∪ ((b ∩ a) ∩
b)) = (b ∩ a) |
132 | 118, 131 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
((b ∩ a) ∩ (a⊥ ∪ b)) = (b ∩
a) |
133 | 116, 132 | 2an 79 |
. . . . . . . . . . . . . . 15
(((b ∩ a) ∩ (b⊥ ∪ a)) ∩ ((b
∩ a) ∩ (a⊥ ∪ b))) = ((b ∩
a) ∩ (b ∩ a)) |
134 | | anidm 111 |
. . . . . . . . . . . . . . . 16
((b ∩ a) ∩ (b
∩ a)) = (b ∩ a) |
135 | 134, 96 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((b ∩ a) ∩ (b
∩ a)) = (a ∩ b) |
136 | 133, 135 | ax-r2 36 |
. . . . . . . . . . . . . 14
(((b ∩ a) ∩ (b⊥ ∪ a)) ∩ ((b
∩ a) ∩ (a⊥ ∪ b))) = (a ∩
b) |
137 | 93, 136 | ax-r2 36 |
. . . . . . . . . . . . 13
((b ∩ a) ∩ ((b⊥ ∪ a) ∩ (a⊥ ∪ b))) = (a ∩
b) |
138 | 92, 137 | ax-r2 36 |
. . . . . . . . . . . 12
((b ∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b))) = (a ∩
b) |
139 | | anass 76 |
. . . . . . . . . . . . . 14
((b ∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b)) = (b ∩
((b⊥ ∪ a) ∩ (a⊥ ∩ b))) |
140 | | dff 101 |
. . . . . . . . . . . . . . . . 17
0 = ((b⊥ ∪
a) ∩ (b⊥ ∪ a)⊥ ) |
141 | 35 | lan 77 |
. . . . . . . . . . . . . . . . 17
((b⊥ ∪ a) ∩ (b⊥ ∪ a)⊥ ) = ((b⊥ ∪ a) ∩ (a⊥ ∩ b)) |
142 | 140, 141 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
0 = ((b⊥ ∪
a) ∩ (a⊥ ∩ b)) |
143 | 142 | lan 77 |
. . . . . . . . . . . . . . 15
(b ∩ 0) = (b ∩ ((b⊥ ∪ a) ∩ (a⊥ ∩ b))) |
144 | 143 | ax-r1 35 |
. . . . . . . . . . . . . 14
(b ∩ ((b⊥ ∪ a) ∩ (a⊥ ∩ b))) = (b ∩
0) |
145 | 139, 144 | ax-r2 36 |
. . . . . . . . . . . . 13
((b ∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b)) = (b ∩
0) |
146 | 145, 122 | ax-r2 36 |
. . . . . . . . . . . 12
((b ∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b)) = 0 |
147 | 138, 146 | 2or 72 |
. . . . . . . . . . 11
(((b ∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b))) ∪ ((b
∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b))) = ((a ∩
b) ∪ 0) |
148 | | or0 102 |
. . . . . . . . . . 11
((a ∩ b) ∪ 0) = (a
∩ b) |
149 | 147, 148 | ax-r2 36 |
. . . . . . . . . 10
(((b ∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b))) ∪ ((b
∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b))) = (a ∩
b) |
150 | 91, 149 | ax-r2 36 |
. . . . . . . . 9
(((b ∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b)) ∪ ((b
∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b)))) = (a ∩
b) |
151 | 90, 150 | ax-r2 36 |
. . . . . . . 8
((b ∩ (b⊥ ∪ a)) ∩ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = (a ∩
b) |
152 | 74, 151 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ (b
∩ (b⊥ ∪ a))) = (a ∩
b) |
153 | 73, 152 | 2or 72 |
. . . . . 6
((((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ (b⊥ ∩ a)) ∪ (((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∩ (b
∩ (b⊥ ∪ a)))) = (0 ∪ (a ∩ b)) |
154 | | ax-a2 31 |
. . . . . . 7
(0 ∪ (a ∩ b)) = ((a ∩
b) ∪ 0) |
155 | 154, 148 | ax-r2 36 |
. . . . . 6
(0 ∪ (a ∩ b)) = (a ∩
b) |
156 | 153, 155 | ax-r2 36 |
. . . . 5
((((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ (b⊥ ∩ a)) ∪ (((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∩ (b
∩ (b⊥ ∪ a)))) = (a ∩
b) |
157 | 25, 156 | ax-r2 36 |
. . . 4
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a)))) = (a ∩
b) |
158 | 157 | lor 70 |
. . 3
((a⊥ ∩ b⊥ ) ∪ (((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∩ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))))) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) |
159 | | ancom 74 |
. . . . . 6
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
160 | | oran 87 |
. . . . . . . 8
(b ∪ a) = (b⊥ ∩ a⊥
)⊥ |
161 | 160 | ax-r1 35 |
. . . . . . 7
(b⊥ ∩ a⊥ )⊥ = (b ∪ a) |
162 | 161 | con3 68 |
. . . . . 6
(b⊥ ∩ a⊥ ) = (b ∪ a)⊥ |
163 | 159, 162 | ax-r2 36 |
. . . . 5
(a⊥ ∩ b⊥ ) = (b ∪ a)⊥ |
164 | | lea 160 |
. . . . . . . . . 10
(b ∩ a⊥ ) ≤ b |
165 | 32, 164 | bltr 138 |
. . . . . . . . 9
(a⊥ ∩ b) ≤ b |
166 | 165, 83 | le2or 168 |
. . . . . . . 8
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ≤ (b
∪ a) |
167 | 166 | lecom 180 |
. . . . . . 7
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) C (b
∪ a) |
168 | 167 | comcom2 183 |
. . . . . 6
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) C (b
∪ a)⊥ |
169 | 168 | comcom 453 |
. . . . 5
(b ∪ a)⊥ C ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
170 | 163, 169 | bctr 181 |
. . . 4
(a⊥ ∩ b⊥ ) C ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
171 | | oran 87 |
. . . . . . 7
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
172 | 171 | ax-r1 35 |
. . . . . 6
(a⊥ ∩ b⊥ )⊥ = (a ∪ b) |
173 | 172 | con3 68 |
. . . . 5
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
174 | | lea 160 |
. . . . . . . . . 10
(a ∩ b⊥ ) ≤ a |
175 | 37, 174 | bltr 138 |
. . . . . . . . 9
(b⊥ ∩ a) ≤ a |
176 | 175, 18 | le2or 168 |
. . . . . . . 8
((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) ≤ (a
∪ b) |
177 | 176 | lecom 180 |
. . . . . . 7
((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) C (a
∪ b) |
178 | 177 | comcom2 183 |
. . . . . 6
((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) C (a
∪ b)⊥ |
179 | 178 | comcom 453 |
. . . . 5
(a ∪ b)⊥ C ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) |
180 | 173, 179 | bctr 181 |
. . . 4
(a⊥ ∩ b⊥ ) C ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) |
181 | 170, 180 | fh3 471 |
. . 3
((a⊥ ∩ b⊥ ) ∪ (((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∩ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))))) = (((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) ∩ ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))))) |
182 | | ax-a2 31 |
. . 3
((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) =
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) |
183 | 158, 181,
182 | 3tr2 64 |
. 2
(((a⊥ ∩
b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) ∩ ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))))) = ((a
∩ b) ∪ (a⊥ ∩ b⊥ )) |
184 | | df-i3 46 |
. . . 4
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
185 | | or32 82 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = (((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∪ (a⊥ ∩ b⊥ )) |
186 | | ax-a2 31 |
. . . . 5
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) |
187 | 185, 186 | ax-r2 36 |
. . . 4
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) |
188 | 184, 187 | ax-r2 36 |
. . 3
(a →3 b) = ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) |
189 | | df-i3 46 |
. . . 4
(b →3 a) = (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))) |
190 | | or32 82 |
. . . . 5
(((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))) = (((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) ∪ (b⊥ ∩ a⊥ )) |
191 | | ancom 74 |
. . . . . . 7
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
192 | 191 | lor 70 |
. . . . . 6
(((b⊥ ∩
a) ∪ (b ∩ (b⊥ ∪ a))) ∪ (b⊥ ∩ a⊥ )) = (((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) ∪ (a⊥ ∩ b⊥ )) |
193 | | ax-a2 31 |
. . . . . 6
(((b⊥ ∩
a) ∪ (b ∩ (b⊥ ∪ a))) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a)))) |
194 | 192, 193 | ax-r2 36 |
. . . . 5
(((b⊥ ∩
a) ∪ (b ∩ (b⊥ ∪ a))) ∪ (b⊥ ∩ a⊥ )) = ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a)))) |
195 | 190, 194 | ax-r2 36 |
. . . 4
(((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))) = ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a)))) |
196 | 189, 195 | ax-r2 36 |
. . 3
(b →3 a) = ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a)))) |
197 | 188, 196 | 2an 79 |
. 2
((a →3 b) ∩ (b
→3 a)) = (((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) ∩ ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))))) |
198 | | dfb 94 |
. 2
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
199 | 183, 197,
198 | 3tr1 63 |
1
((a →3 b) ∩ (b
→3 a)) = (a ≡ b) |