Proof of Theorem i3bi
| Step | Hyp | Ref
| Expression |
| 1 | | anor2 89 |
. . . . . . 7
(b⊥ ∩ a) = (b ∪
a⊥
)⊥ |
| 2 | | lea 160 |
. . . . . . . . . . . . 13
(a⊥ ∩ b) ≤ a⊥ |
| 3 | | leo 158 |
. . . . . . . . . . . . . 14
a⊥ ≤ (a⊥ ∪ b) |
| 4 | | ax-a2 31 |
. . . . . . . . . . . . . 14
(a⊥ ∪ b) = (b ∪
a⊥ ) |
| 5 | 3, 4 | lbtr 139 |
. . . . . . . . . . . . 13
a⊥ ≤ (b ∪ a⊥ ) |
| 6 | 2, 5 | letr 137 |
. . . . . . . . . . . 12
(a⊥ ∩ b) ≤ (b ∪
a⊥ ) |
| 7 | | lea 160 |
. . . . . . . . . . . . 13
((a⊥ ∪ b) ∩ a) ≤
(a⊥ ∪ b) |
| 8 | | ancom 74 |
. . . . . . . . . . . . 13
(a ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ a) |
| 9 | | ax-a2 31 |
. . . . . . . . . . . . 13
(b ∪ a⊥ ) = (a⊥ ∪ b) |
| 10 | 7, 8, 9 | le3tr1 140 |
. . . . . . . . . . . 12
(a ∩ (a⊥ ∪ b)) ≤ (b
∪ a⊥
) |
| 11 | 6, 10 | le2or 168 |
. . . . . . . . . . 11
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ≤ ((b
∪ a⊥ ) ∪ (b ∪ a⊥ )) |
| 12 | | oridm 110 |
. . . . . . . . . . 11
((b ∪ a⊥ ) ∪ (b ∪ a⊥ )) = (b ∪ a⊥ ) |
| 13 | 11, 12 | lbtr 139 |
. . . . . . . . . 10
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ≤ (b
∪ a⊥
) |
| 14 | 13 | lecom 180 |
. . . . . . . . 9
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) C (b
∪ a⊥
) |
| 15 | 14 | comcom2 183 |
. . . . . . . 8
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) C (b
∪ a⊥
)⊥ |
| 16 | 15 | comcom 453 |
. . . . . . 7
(b ∪ a⊥ )⊥ C
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
| 17 | 1, 16 | bctr 181 |
. . . . . 6
(b⊥ ∩ a) C ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
| 18 | | lea 160 |
. . . . . . . . . . 11
(b ∩ (b⊥ ∪ a)) ≤ b |
| 19 | | leo 158 |
. . . . . . . . . . 11
b ≤ (b ∪ a⊥ ) |
| 20 | 18, 19 | letr 137 |
. . . . . . . . . 10
(b ∩ (b⊥ ∪ a)) ≤ (b
∪ a⊥
) |
| 21 | 20 | lecom 180 |
. . . . . . . . 9
(b ∩ (b⊥ ∪ a)) C (b
∪ a⊥
) |
| 22 | 21 | comcom2 183 |
. . . . . . . 8
(b ∩ (b⊥ ∪ a)) C (b
∪ a⊥
)⊥ |
| 23 | 22 | comcom 453 |
. . . . . . 7
(b ∪ a⊥ )⊥ C
(b ∩ (b⊥ ∪ a)) |
| 24 | 1, 23 | bctr 181 |
. . . . . 6
(b⊥ ∩ a) C (b
∩ (b⊥ ∪ a)) |
| 25 | 17, 24 | fh2 470 |
. . . . 5
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a)))) = ((((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∩ (b⊥ ∩ a)) ∪ (((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∩ (b
∩ (b⊥ ∪ a)))) |
| 26 | | ancom 74 |
. . . . . . . 8
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ (b⊥ ∩ a)) = ((b⊥ ∩ a) ∩ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) |
| 27 | | lea 160 |
. . . . . . . . . . . . . 14
(b⊥ ∩ a) ≤ b⊥ |
| 28 | | leo 158 |
. . . . . . . . . . . . . 14
b⊥ ≤ (b⊥ ∪ a) |
| 29 | 27, 28 | letr 137 |
. . . . . . . . . . . . 13
(b⊥ ∩ a) ≤ (b⊥ ∪ a) |
| 30 | 29 | lecom 180 |
. . . . . . . . . . . 12
(b⊥ ∩ a) C (b⊥ ∪ a) |
| 31 | 30 | comcom2 183 |
. . . . . . . . . . 11
(b⊥ ∩ a) C (b⊥ ∪ a)⊥ |
| 32 | | ancom 74 |
. . . . . . . . . . . . 13
(a⊥ ∩ b) = (b ∩
a⊥ ) |
| 33 | | anor1 88 |
. . . . . . . . . . . . 13
(b ∩ a⊥ ) = (b⊥ ∪ a)⊥ |
| 34 | 32, 33 | ax-r2 36 |
. . . . . . . . . . . 12
(a⊥ ∩ b) = (b⊥ ∪ a)⊥ |
| 35 | 34 | ax-r1 35 |
. . . . . . . . . . 11
(b⊥ ∪ a)⊥ = (a⊥ ∩ b) |
| 36 | 31, 35 | cbtr 182 |
. . . . . . . . . 10
(b⊥ ∩ a) C (a⊥ ∩ b) |
| 37 | | ancom 74 |
. . . . . . . . . . . 12
(b⊥ ∩ a) = (a ∩
b⊥ ) |
| 38 | | anor1 88 |
. . . . . . . . . . . 12
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
| 39 | 37, 38 | ax-r2 36 |
. . . . . . . . . . 11
(b⊥ ∩ a) = (a⊥ ∪ b)⊥ |
| 40 | 8, 7 | bltr 138 |
. . . . . . . . . . . . . 14
(a ∩ (a⊥ ∪ b)) ≤ (a⊥ ∪ b) |
| 41 | 40 | lecom 180 |
. . . . . . . . . . . . 13
(a ∩ (a⊥ ∪ b)) C (a⊥ ∪ b) |
| 42 | 41 | comcom2 183 |
. . . . . . . . . . . 12
(a ∩ (a⊥ ∪ b)) C (a⊥ ∪ b)⊥ |
| 43 | 42 | comcom 453 |
. . . . . . . . . . 11
(a⊥ ∪ b)⊥ C (a ∩ (a⊥ ∪ b)) |
| 44 | 39, 43 | bctr 181 |
. . . . . . . . . 10
(b⊥ ∩ a) C (a
∩ (a⊥ ∪ b)) |
| 45 | 36, 44 | fh1 469 |
. . . . . . . . 9
((b⊥ ∩ a) ∩ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = (((b⊥ ∩ a) ∩ (a⊥ ∩ b)) ∪ ((b⊥ ∩ a) ∩ (a
∩ (a⊥ ∪ b)))) |
| 46 | 37 | ran 78 |
. . . . . . . . . . . 12
((b⊥ ∩ a) ∩ (a⊥ ∩ b)) = ((a ∩
b⊥ ) ∩ (a⊥ ∩ b)) |
| 47 | | an4 86 |
. . . . . . . . . . . . 13
((a ∩ b⊥ ) ∩ (a⊥ ∩ b)) = ((a ∩
a⊥ ) ∩ (b⊥ ∩ b)) |
| 48 | | dff 101 |
. . . . . . . . . . . . . . . 16
0 = (a ∩ a⊥ ) |
| 49 | | dff 101 |
. . . . . . . . . . . . . . . . 17
0 = (b ∩ b⊥ ) |
| 50 | | ancom 74 |
. . . . . . . . . . . . . . . . 17
(b ∩ b⊥ ) = (b⊥ ∩ b) |
| 51 | 49, 50 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
0 = (b⊥ ∩
b) |
| 52 | 48, 51 | 2an 79 |
. . . . . . . . . . . . . . 15
(0 ∩ 0) = ((a ∩ a⊥ ) ∩ (b⊥ ∩ b)) |
| 53 | 52 | ax-r1 35 |
. . . . . . . . . . . . . 14
((a ∩ a⊥ ) ∩ (b⊥ ∩ b)) = (0 ∩ 0) |
| 54 | | anidm 111 |
. . . . . . . . . . . . . 14
(0 ∩ 0) = 0 |
| 55 | 53, 54 | ax-r2 36 |
. . . . . . . . . . . . 13
((a ∩ a⊥ ) ∩ (b⊥ ∩ b)) = 0 |
| 56 | 47, 55 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∩ b⊥ ) ∩ (a⊥ ∩ b)) = 0 |
| 57 | 46, 56 | ax-r2 36 |
. . . . . . . . . . 11
((b⊥ ∩ a) ∩ (a⊥ ∩ b)) = 0 |
| 58 | | an12 81 |
. . . . . . . . . . . 12
((b⊥ ∩ a) ∩ (a
∩ (a⊥ ∪ b))) = (a ∩
((b⊥ ∩ a) ∩ (a⊥ ∪ b))) |
| 59 | | dff 101 |
. . . . . . . . . . . . . . . 16
0 = ((b⊥ ∩
a) ∩ (b⊥ ∩ a)⊥ ) |
| 60 | 1 | con2 67 |
. . . . . . . . . . . . . . . . . 18
(b⊥ ∩ a)⊥ = (b ∪ a⊥ ) |
| 61 | 60, 9 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
(b⊥ ∩ a)⊥ = (a⊥ ∪ b) |
| 62 | 61 | lan 77 |
. . . . . . . . . . . . . . . 16
((b⊥ ∩ a) ∩ (b⊥ ∩ a)⊥ ) = ((b⊥ ∩ a) ∩ (a⊥ ∪ b)) |
| 63 | 59, 62 | ax-r2 36 |
. . . . . . . . . . . . . . 15
0 = ((b⊥ ∩
a) ∩ (a⊥ ∪ b)) |
| 64 | 63 | lan 77 |
. . . . . . . . . . . . . 14
(a ∩ 0) = (a ∩ ((b⊥ ∩ a) ∩ (a⊥ ∪ b))) |
| 65 | 64 | ax-r1 35 |
. . . . . . . . . . . . 13
(a ∩ ((b⊥ ∩ a) ∩ (a⊥ ∪ b))) = (a ∩
0) |
| 66 | | an0 108 |
. . . . . . . . . . . . 13
(a ∩ 0) = 0 |
| 67 | 65, 66 | ax-r2 36 |
. . . . . . . . . . . 12
(a ∩ ((b⊥ ∩ a) ∩ (a⊥ ∪ b))) = 0 |
| 68 | 58, 67 | ax-r2 36 |
. . . . . . . . . . 11
((b⊥ ∩ a) ∩ (a
∩ (a⊥ ∪ b))) = 0 |
| 69 | 57, 68 | 2or 72 |
. . . . . . . . . 10
(((b⊥ ∩
a) ∩ (a⊥ ∩ b)) ∪ ((b⊥ ∩ a) ∩ (a
∩ (a⊥ ∪ b)))) = (0 ∪ 0) |
| 70 | | oridm 110 |
. . . . . . . . . 10
(0 ∪ 0) = 0 |
| 71 | 69, 70 | ax-r2 36 |
. . . . . . . . 9
(((b⊥ ∩
a) ∩ (a⊥ ∩ b)) ∪ ((b⊥ ∩ a) ∩ (a
∩ (a⊥ ∪ b)))) = 0 |
| 72 | 45, 71 | ax-r2 36 |
. . . . . . . 8
((b⊥ ∩ a) ∩ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = 0 |
| 73 | 26, 72 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ (b⊥ ∩ a)) = 0 |
| 74 | | ancom 74 |
. . . . . . . 8
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ (b
∩ (b⊥ ∪ a))) = ((b ∩
(b⊥ ∪ a)) ∩ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) |
| 75 | | ancom 74 |
. . . . . . . . . . . . . . 15
(b ∩ (b⊥ ∪ a)) = ((b⊥ ∪ a) ∩ b) |
| 76 | | lea 160 |
. . . . . . . . . . . . . . 15
((b⊥ ∪ a) ∩ b) ≤
(b⊥ ∪ a) |
| 77 | 75, 76 | bltr 138 |
. . . . . . . . . . . . . 14
(b ∩ (b⊥ ∪ a)) ≤ (b⊥ ∪ a) |
| 78 | 77 | lecom 180 |
. . . . . . . . . . . . 13
(b ∩ (b⊥ ∪ a)) C (b⊥ ∪ a) |
| 79 | 78 | comcom2 183 |
. . . . . . . . . . . 12
(b ∩ (b⊥ ∪ a)) C (b⊥ ∪ a)⊥ |
| 80 | 79 | comcom 453 |
. . . . . . . . . . 11
(b⊥ ∪ a)⊥ C (b ∩ (b⊥ ∪ a)) |
| 81 | 34, 80 | bctr 181 |
. . . . . . . . . 10
(a⊥ ∩ b) C (b
∩ (b⊥ ∪ a)) |
| 82 | | anor2 89 |
. . . . . . . . . . 11
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
| 83 | | lea 160 |
. . . . . . . . . . . . . . 15
(a ∩ (a⊥ ∪ b)) ≤ a |
| 84 | | leo 158 |
. . . . . . . . . . . . . . 15
a ≤ (a ∪ b⊥ ) |
| 85 | 83, 84 | letr 137 |
. . . . . . . . . . . . . 14
(a ∩ (a⊥ ∪ b)) ≤ (a
∪ b⊥
) |
| 86 | 85 | lecom 180 |
. . . . . . . . . . . . 13
(a ∩ (a⊥ ∪ b)) C (a
∪ b⊥
) |
| 87 | 86 | comcom2 183 |
. . . . . . . . . . . 12
(a ∩ (a⊥ ∪ b)) C (a
∪ b⊥
)⊥ |
| 88 | 87 | comcom 453 |
. . . . . . . . . . 11
(a ∪ b⊥ )⊥ C
(a ∩ (a⊥ ∪ b)) |
| 89 | 82, 88 | bctr 181 |
. . . . . . . . . 10
(a⊥ ∩ b) C (a
∩ (a⊥ ∪ b)) |
| 90 | 81, 89 | fh2 470 |
. . . . . . . . 9
((b ∩ (b⊥ ∪ a)) ∩ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = (((b
∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b)) ∪ ((b
∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b)))) |
| 91 | | ax-a2 31 |
. . . . . . . . . 10
(((b ∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b)) ∪ ((b
∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b)))) = (((b
∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b))) ∪ ((b
∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b))) |
| 92 | | an4 86 |
. . . . . . . . . . . . 13
((b ∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b))) = ((b ∩
a) ∩ ((b⊥ ∪ a) ∩ (a⊥ ∪ b))) |
| 93 | | anandi 114 |
. . . . . . . . . . . . . 14
((b ∩ a) ∩ ((b⊥ ∪ a) ∩ (a⊥ ∪ b))) = (((b
∩ a) ∩ (b⊥ ∪ a)) ∩ ((b
∩ a) ∩ (a⊥ ∪ b))) |
| 94 | | coman1 185 |
. . . . . . . . . . . . . . . . . . 19
(b ∩ a) C b |
| 95 | 94 | comcom2 183 |
. . . . . . . . . . . . . . . . . 18
(b ∩ a) C b⊥ |
| 96 | | ancom 74 |
. . . . . . . . . . . . . . . . . . 19
(b ∩ a) = (a ∩
b) |
| 97 | | coman1 185 |
. . . . . . . . . . . . . . . . . . 19
(a ∩ b) C a |
| 98 | 96, 97 | bctr 181 |
. . . . . . . . . . . . . . . . . 18
(b ∩ a) C a |
| 99 | 95, 98 | fh1 469 |
. . . . . . . . . . . . . . . . 17
((b ∩ a) ∩ (b⊥ ∪ a)) = (((b ∩
a) ∩ b⊥ ) ∪ ((b ∩ a) ∩
a)) |
| 100 | | an32 83 |
. . . . . . . . . . . . . . . . . . . . 21
((b ∩ a) ∩ b⊥ ) = ((b ∩ b⊥ ) ∩ a) |
| 101 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . 22
((b ∩ b⊥ ) ∩ a) = (a ∩
(b ∩ b⊥ )) |
| 102 | 49 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . 24
(a ∩ 0) = (a ∩ (b ∩
b⊥ )) |
| 103 | 102 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . . . . . 23
(a ∩ (b ∩ b⊥ )) = (a ∩ 0) |
| 104 | 103, 66 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . . 22
(a ∩ (b ∩ b⊥ )) = 0 |
| 105 | 101, 104 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . 21
((b ∩ b⊥ ) ∩ a) = 0 |
| 106 | 100, 105 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . 20
((b ∩ a) ∩ b⊥ ) = 0 |
| 107 | | anass 76 |
. . . . . . . . . . . . . . . . . . . . 21
((b ∩ a) ∩ a) =
(b ∩ (a ∩ a)) |
| 108 | | anidm 111 |
. . . . . . . . . . . . . . . . . . . . . 22
(a ∩ a) = a |
| 109 | 108 | lan 77 |
. . . . . . . . . . . . . . . . . . . . 21
(b ∩ (a ∩ a)) =
(b ∩ a) |
| 110 | 107, 109 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . 20
((b ∩ a) ∩ a) =
(b ∩ a) |
| 111 | 106, 110 | 2or 72 |
. . . . . . . . . . . . . . . . . . 19
(((b ∩ a) ∩ b⊥ ) ∪ ((b ∩ a) ∩
a)) = (0 ∪ (b ∩ a)) |
| 112 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . 19
(0 ∪ (b ∩ a)) = ((b ∩
a) ∪ 0) |
| 113 | 111, 112 | ax-r2 36 |
. . . . . . . . . . . . . . . . . 18
(((b ∩ a) ∩ b⊥ ) ∪ ((b ∩ a) ∩
a)) = ((b ∩ a) ∪
0) |
| 114 | | or0 102 |
. . . . . . . . . . . . . . . . . 18
((b ∩ a) ∪ 0) = (b
∩ a) |
| 115 | 113, 114 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
(((b ∩ a) ∩ b⊥ ) ∪ ((b ∩ a) ∩
a)) = (b ∩ a) |
| 116 | 99, 115 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
((b ∩ a) ∩ (b⊥ ∪ a)) = (b ∩
a) |
| 117 | 98 | comcom2 183 |
. . . . . . . . . . . . . . . . . 18
(b ∩ a) C a⊥ |
| 118 | 117, 94 | fh1 469 |
. . . . . . . . . . . . . . . . 17
((b ∩ a) ∩ (a⊥ ∪ b)) = (((b ∩
a) ∩ a⊥ ) ∪ ((b ∩ a) ∩
b)) |
| 119 | | anass 76 |
. . . . . . . . . . . . . . . . . . . . 21
((b ∩ a) ∩ a⊥ ) = (b ∩ (a ∩
a⊥ )) |
| 120 | 48 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . 23
(b ∩ 0) = (b ∩ (a ∩
a⊥ )) |
| 121 | 120 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . . . . 22
(b ∩ (a ∩ a⊥ )) = (b ∩ 0) |
| 122 | | an0 108 |
. . . . . . . . . . . . . . . . . . . . . 22
(b ∩ 0) = 0 |
| 123 | 121, 122 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . 21
(b ∩ (a ∩ a⊥ )) = 0 |
| 124 | 119, 123 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . 20
((b ∩ a) ∩ a⊥ ) = 0 |
| 125 | | an32 83 |
. . . . . . . . . . . . . . . . . . . . 21
((b ∩ a) ∩ b) =
((b ∩ b) ∩ a) |
| 126 | | anidm 111 |
. . . . . . . . . . . . . . . . . . . . . 22
(b ∩ b) = b |
| 127 | 126 | ran 78 |
. . . . . . . . . . . . . . . . . . . . 21
((b ∩ b) ∩ a) =
(b ∩ a) |
| 128 | 125, 127 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . 20
((b ∩ a) ∩ b) =
(b ∩ a) |
| 129 | 124, 128 | 2or 72 |
. . . . . . . . . . . . . . . . . . 19
(((b ∩ a) ∩ a⊥ ) ∪ ((b ∩ a) ∩
b)) = (0 ∪ (b ∩ a)) |
| 130 | 129, 112 | ax-r2 36 |
. . . . . . . . . . . . . . . . . 18
(((b ∩ a) ∩ a⊥ ) ∪ ((b ∩ a) ∩
b)) = ((b ∩ a) ∪
0) |
| 131 | 130, 114 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
(((b ∩ a) ∩ a⊥ ) ∪ ((b ∩ a) ∩
b)) = (b ∩ a) |
| 132 | 118, 131 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
((b ∩ a) ∩ (a⊥ ∪ b)) = (b ∩
a) |
| 133 | 116, 132 | 2an 79 |
. . . . . . . . . . . . . . 15
(((b ∩ a) ∩ (b⊥ ∪ a)) ∩ ((b
∩ a) ∩ (a⊥ ∪ b))) = ((b ∩
a) ∩ (b ∩ a)) |
| 134 | | anidm 111 |
. . . . . . . . . . . . . . . 16
((b ∩ a) ∩ (b
∩ a)) = (b ∩ a) |
| 135 | 134, 96 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((b ∩ a) ∩ (b
∩ a)) = (a ∩ b) |
| 136 | 133, 135 | ax-r2 36 |
. . . . . . . . . . . . . 14
(((b ∩ a) ∩ (b⊥ ∪ a)) ∩ ((b
∩ a) ∩ (a⊥ ∪ b))) = (a ∩
b) |
| 137 | 93, 136 | ax-r2 36 |
. . . . . . . . . . . . 13
((b ∩ a) ∩ ((b⊥ ∪ a) ∩ (a⊥ ∪ b))) = (a ∩
b) |
| 138 | 92, 137 | ax-r2 36 |
. . . . . . . . . . . 12
((b ∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b))) = (a ∩
b) |
| 139 | | anass 76 |
. . . . . . . . . . . . . 14
((b ∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b)) = (b ∩
((b⊥ ∪ a) ∩ (a⊥ ∩ b))) |
| 140 | | dff 101 |
. . . . . . . . . . . . . . . . 17
0 = ((b⊥ ∪
a) ∩ (b⊥ ∪ a)⊥ ) |
| 141 | 35 | lan 77 |
. . . . . . . . . . . . . . . . 17
((b⊥ ∪ a) ∩ (b⊥ ∪ a)⊥ ) = ((b⊥ ∪ a) ∩ (a⊥ ∩ b)) |
| 142 | 140, 141 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
0 = ((b⊥ ∪
a) ∩ (a⊥ ∩ b)) |
| 143 | 142 | lan 77 |
. . . . . . . . . . . . . . 15
(b ∩ 0) = (b ∩ ((b⊥ ∪ a) ∩ (a⊥ ∩ b))) |
| 144 | 143 | ax-r1 35 |
. . . . . . . . . . . . . 14
(b ∩ ((b⊥ ∪ a) ∩ (a⊥ ∩ b))) = (b ∩
0) |
| 145 | 139, 144 | ax-r2 36 |
. . . . . . . . . . . . 13
((b ∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b)) = (b ∩
0) |
| 146 | 145, 122 | ax-r2 36 |
. . . . . . . . . . . 12
((b ∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b)) = 0 |
| 147 | 138, 146 | 2or 72 |
. . . . . . . . . . 11
(((b ∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b))) ∪ ((b
∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b))) = ((a ∩
b) ∪ 0) |
| 148 | | or0 102 |
. . . . . . . . . . 11
((a ∩ b) ∪ 0) = (a
∩ b) |
| 149 | 147, 148 | ax-r2 36 |
. . . . . . . . . 10
(((b ∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b))) ∪ ((b
∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b))) = (a ∩
b) |
| 150 | 91, 149 | ax-r2 36 |
. . . . . . . . 9
(((b ∩ (b⊥ ∪ a)) ∩ (a⊥ ∩ b)) ∪ ((b
∩ (b⊥ ∪ a)) ∩ (a
∩ (a⊥ ∪ b)))) = (a ∩
b) |
| 151 | 90, 150 | ax-r2 36 |
. . . . . . . 8
((b ∩ (b⊥ ∪ a)) ∩ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = (a ∩
b) |
| 152 | 74, 151 | ax-r2 36 |
. . . . . . 7
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ (b
∩ (b⊥ ∪ a))) = (a ∩
b) |
| 153 | 73, 152 | 2or 72 |
. . . . . 6
((((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ (b⊥ ∩ a)) ∪ (((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∩ (b
∩ (b⊥ ∪ a)))) = (0 ∪ (a ∩ b)) |
| 154 | | ax-a2 31 |
. . . . . . 7
(0 ∪ (a ∩ b)) = ((a ∩
b) ∪ 0) |
| 155 | 154, 148 | ax-r2 36 |
. . . . . 6
(0 ∪ (a ∩ b)) = (a ∩
b) |
| 156 | 153, 155 | ax-r2 36 |
. . . . 5
((((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ (b⊥ ∩ a)) ∪ (((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∩ (b
∩ (b⊥ ∪ a)))) = (a ∩
b) |
| 157 | 25, 156 | ax-r2 36 |
. . . 4
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∩ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a)))) = (a ∩
b) |
| 158 | 157 | lor 70 |
. . 3
((a⊥ ∩ b⊥ ) ∪ (((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∩ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))))) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) |
| 159 | | ancom 74 |
. . . . . 6
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
| 160 | | oran 87 |
. . . . . . . 8
(b ∪ a) = (b⊥ ∩ a⊥
)⊥ |
| 161 | 160 | ax-r1 35 |
. . . . . . 7
(b⊥ ∩ a⊥ )⊥ = (b ∪ a) |
| 162 | 161 | con3 68 |
. . . . . 6
(b⊥ ∩ a⊥ ) = (b ∪ a)⊥ |
| 163 | 159, 162 | ax-r2 36 |
. . . . 5
(a⊥ ∩ b⊥ ) = (b ∪ a)⊥ |
| 164 | | lea 160 |
. . . . . . . . . 10
(b ∩ a⊥ ) ≤ b |
| 165 | 32, 164 | bltr 138 |
. . . . . . . . 9
(a⊥ ∩ b) ≤ b |
| 166 | 165, 83 | le2or 168 |
. . . . . . . 8
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ≤ (b
∪ a) |
| 167 | 166 | lecom 180 |
. . . . . . 7
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) C (b
∪ a) |
| 168 | 167 | comcom2 183 |
. . . . . 6
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) C (b
∪ a)⊥ |
| 169 | 168 | comcom 453 |
. . . . 5
(b ∪ a)⊥ C ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
| 170 | 163, 169 | bctr 181 |
. . . 4
(a⊥ ∩ b⊥ ) C ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
| 171 | | oran 87 |
. . . . . . 7
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
| 172 | 171 | ax-r1 35 |
. . . . . 6
(a⊥ ∩ b⊥ )⊥ = (a ∪ b) |
| 173 | 172 | con3 68 |
. . . . 5
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
| 174 | | lea 160 |
. . . . . . . . . 10
(a ∩ b⊥ ) ≤ a |
| 175 | 37, 174 | bltr 138 |
. . . . . . . . 9
(b⊥ ∩ a) ≤ a |
| 176 | 175, 18 | le2or 168 |
. . . . . . . 8
((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) ≤ (a
∪ b) |
| 177 | 176 | lecom 180 |
. . . . . . 7
((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) C (a
∪ b) |
| 178 | 177 | comcom2 183 |
. . . . . 6
((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) C (a
∪ b)⊥ |
| 179 | 178 | comcom 453 |
. . . . 5
(a ∪ b)⊥ C ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) |
| 180 | 173, 179 | bctr 181 |
. . . 4
(a⊥ ∩ b⊥ ) C ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) |
| 181 | 170, 180 | fh3 471 |
. . 3
((a⊥ ∩ b⊥ ) ∪ (((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∩ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))))) = (((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) ∩ ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))))) |
| 182 | | ax-a2 31 |
. . 3
((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) =
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 183 | 158, 181,
182 | 3tr2 64 |
. 2
(((a⊥ ∩
b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) ∩ ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))))) = ((a
∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 184 | | df-i3 46 |
. . . 4
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
| 185 | | or32 82 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = (((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∪ (a⊥ ∩ b⊥ )) |
| 186 | | ax-a2 31 |
. . . . 5
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) |
| 187 | 185, 186 | ax-r2 36 |
. . . 4
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) |
| 188 | 184, 187 | ax-r2 36 |
. . 3
(a →3 b) = ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) |
| 189 | | df-i3 46 |
. . . 4
(b →3 a) = (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))) |
| 190 | | or32 82 |
. . . . 5
(((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))) = (((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) ∪ (b⊥ ∩ a⊥ )) |
| 191 | | ancom 74 |
. . . . . . 7
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
| 192 | 191 | lor 70 |
. . . . . 6
(((b⊥ ∩
a) ∪ (b ∩ (b⊥ ∪ a))) ∪ (b⊥ ∩ a⊥ )) = (((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))) ∪ (a⊥ ∩ b⊥ )) |
| 193 | | ax-a2 31 |
. . . . . 6
(((b⊥ ∩
a) ∪ (b ∩ (b⊥ ∪ a))) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a)))) |
| 194 | 192, 193 | ax-r2 36 |
. . . . 5
(((b⊥ ∩
a) ∪ (b ∩ (b⊥ ∪ a))) ∪ (b⊥ ∩ a⊥ )) = ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a)))) |
| 195 | 190, 194 | ax-r2 36 |
. . . 4
(((b⊥ ∩
a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))) = ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a)))) |
| 196 | 189, 195 | ax-r2 36 |
. . 3
(b →3 a) = ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a)))) |
| 197 | 188, 196 | 2an 79 |
. 2
((a →3 b) ∩ (b
→3 a)) = (((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) ∩ ((a⊥ ∩ b⊥ ) ∪ ((b⊥ ∩ a) ∪ (b
∩ (b⊥ ∪ a))))) |
| 198 | | dfb 94 |
. 2
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
| 199 | 183, 197,
198 | 3tr1 63 |
1
((a →3 b) ∩ (b
→3 a)) = (a ≡ b) |