QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  biid GIF version

Theorem biid 116
Description: Identity law. (Contributed by NM, 10-Aug-1997.)
Assertion
Ref Expression
biid (aa) = 1

Proof of Theorem biid
StepHypRef Expression
1 anidm 111 . . 3 (aa) = a
2 anidm 111 . . 3 (aa ) = a
31, 22or 72 . 2 ((aa) ∪ (aa )) = (aa )
4 dfb 94 . 2 (aa) = ((aa) ∪ (aa ))
5 df-t 41 . 2 1 = (aa )
63, 4, 53tr1 63 1 (aa) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  tb 5  wo 6  wa 7  1wt 8
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42
This theorem is referenced by:  bi1  118  ska1  231  wdid0id1  1112
  Copyright terms: Public domain W3C validator