QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  anandir GIF version

Theorem anandir 115
Description: Distribution of conjunction over conjunction. (Contributed by NM, 27-Aug-1997.)
Assertion
Ref Expression
anandir ((ab) ∩ c) = ((ac) ∩ (bc))

Proof of Theorem anandir
StepHypRef Expression
1 anidm 111 . . . 4 (cc) = c
21ax-r1 35 . . 3 c = (cc)
32lan 77 . 2 ((ab) ∩ c) = ((ab) ∩ (cc))
4 an4 86 . 2 ((ab) ∩ (cc)) = ((ac) ∩ (bc))
53, 4ax-r2 36 1 ((ab) ∩ c) = ((ac) ∩ (bc))
Colors of variables: term
Syntax hints:   = wb 1  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42
This theorem is referenced by:  leran  153  ka4lemo  228  wr5-2v  366  wleran  394  ska4  433  i3orlem5  556  ud2lem1  563  mlaoml  833  comanblem2  871  e2astlem1  895  oath1  1004  4oath1  1041  lem3.3.6  1056
  Copyright terms: Public domain W3C validator