Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > anandir | GIF version |
Description: Distribution of conjunction over conjunction. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
anandir | ((a ∩ b) ∩ c) = ((a ∩ c) ∩ (b ∩ c)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 111 | . . . 4 (c ∩ c) = c | |
2 | 1 | ax-r1 35 | . . 3 c = (c ∩ c) |
3 | 2 | lan 77 | . 2 ((a ∩ b) ∩ c) = ((a ∩ b) ∩ (c ∩ c)) |
4 | an4 86 | . 2 ((a ∩ b) ∩ (c ∩ c)) = ((a ∩ c) ∩ (b ∩ c)) | |
5 | 3, 4 | ax-r2 36 | 1 ((a ∩ b) ∩ c) = ((a ∩ c) ∩ (b ∩ c)) |
Colors of variables: term |
Syntax hints: = wb 1 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 |
This theorem is referenced by: leran 153 ka4lemo 228 wr5-2v 366 wleran 394 ska4 433 i3orlem5 556 ud2lem1 563 mlaoml 833 comanblem2 871 e2astlem1 895 oath1 1004 4oath1 1041 lem3.3.6 1056 |
Copyright terms: Public domain | W3C validator |