QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wdid0id1 GIF version

Theorem wdid0id1 1112
Description: Show a quantum identity that follows from classical identity in a WDOL. (Contributed by NM, 5-Mar-2006.)
Hypothesis
Ref Expression
wdid0id5.1 (a0 b) = 1
Assertion
Ref Expression
wdid0id1 (a1 b) = 1

Proof of Theorem wdid0id1
StepHypRef Expression
1 df-id1 50 . 2 (a1 b) = ((ab ) ∩ (a ∪ (ab)))
2 df-id0 49 . . . . 5 (a0 b) = ((ab) ∩ (ba))
32ax-r1 35 . . . 4 ((ab) ∩ (ba)) = (a0 b)
4 wdid0id5.1 . . . 4 (a0 b) = 1
53, 4ax-r2 36 . . 3 ((ab) ∩ (ba)) = 1
6 wancom 203 . . . . . . . 8 (((aa) ∩ (ab)) ≡ ((ab) ∩ (aa))) = 1
7 wa2 192 . . . . . . . . . 10 ((aa) ≡ (aa )) = 1
87wlan 370 . . . . . . . . 9 (((ab) ∩ (aa)) ≡ ((ab) ∩ (aa ))) = 1
9 wa4 194 . . . . . . . . . 10 (((ab) ∪ (aa )) ≡ (aa )) = 1
109wleoa 376 . . . . . . . . 9 (((ab) ∩ (aa )) ≡ (ab)) = 1
118, 10wr2 371 . . . . . . . 8 (((ab) ∩ (aa)) ≡ (ab)) = 1
126, 11wr2 371 . . . . . . 7 (((aa) ∩ (ab)) ≡ (ab)) = 1
1312wr1 197 . . . . . 6 ((ab) ≡ ((aa) ∩ (ab))) = 1
14 wddi3 1109 . . . . . . 7 ((a ∪ (ab)) ≡ ((aa) ∩ (ab))) = 1
1514wr1 197 . . . . . 6 (((aa) ∩ (ab)) ≡ (a ∪ (ab))) = 1
1613, 15wr2 371 . . . . 5 ((ab) ≡ (a ∪ (ab))) = 1
17 wa2 192 . . . . 5 ((ba) ≡ (ab )) = 1
1816, 17w2an 373 . . . 4 (((ab) ∩ (ba)) ≡ ((a ∪ (ab)) ∩ (ab ))) = 1
19 biid 116 . . . 4 (((ab) ∩ (ba)) ≡ ((ab) ∩ (ba))) = 1
20 wancom 203 . . . 4 (((ab ) ∩ (a ∪ (ab))) ≡ ((a ∪ (ab)) ∩ (ab ))) = 1
2118, 19, 20w3tr1 374 . . 3 (((ab) ∩ (ba)) ≡ ((ab ) ∩ (a ∪ (ab)))) = 1
225, 21wwbmp 205 . 2 ((ab ) ∩ (a ∪ (ab))) = 1
231, 22ax-r2 36 1 (a1 b) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  1wt 8  0 wid0 17  1 wid1 18
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361  ax-wdol 1104
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-id0 49  df-id1 50  df-le 129  df-le1 130  df-le2 131  df-cmtr 134
This theorem is referenced by:  wddi-1  1118
  Copyright terms: Public domain W3C validator