Proof of Theorem wdid0id1
Step | Hyp | Ref
| Expression |
1 | | df-id1 50 |
. 2
(a ≡1 b) = ((a ∪
b⊥ ) ∩ (a⊥ ∪ (a ∩ b))) |
2 | | df-id0 49 |
. . . . 5
(a ≡0 b) = ((a⊥ ∪ b) ∩ (b⊥ ∪ a)) |
3 | 2 | ax-r1 35 |
. . . 4
((a⊥ ∪ b) ∩ (b⊥ ∪ a)) = (a
≡0 b) |
4 | | wdid0id5.1 |
. . . 4
(a ≡0 b) = 1 |
5 | 3, 4 | ax-r2 36 |
. . 3
((a⊥ ∪ b) ∩ (b⊥ ∪ a)) = 1 |
6 | | wancom 203 |
. . . . . . . 8
(((a⊥ ∪
a) ∩ (a⊥ ∪ b)) ≡ ((a⊥ ∪ b) ∩ (a⊥ ∪ a))) = 1 |
7 | | wa2 192 |
. . . . . . . . . 10
((a⊥ ∪ a) ≡ (a
∪ a⊥ )) =
1 |
8 | 7 | wlan 370 |
. . . . . . . . 9
(((a⊥ ∪
b) ∩ (a⊥ ∪ a)) ≡ ((a⊥ ∪ b) ∩ (a
∪ a⊥ ))) =
1 |
9 | | wa4 194 |
. . . . . . . . . 10
(((a⊥ ∪
b) ∪ (a ∪ a⊥ )) ≡ (a ∪ a⊥ )) = 1 |
10 | 9 | wleoa 376 |
. . . . . . . . 9
(((a⊥ ∪
b) ∩ (a ∪ a⊥ )) ≡ (a⊥ ∪ b)) = 1 |
11 | 8, 10 | wr2 371 |
. . . . . . . 8
(((a⊥ ∪
b) ∩ (a⊥ ∪ a)) ≡ (a⊥ ∪ b)) = 1 |
12 | 6, 11 | wr2 371 |
. . . . . . 7
(((a⊥ ∪
a) ∩ (a⊥ ∪ b)) ≡ (a⊥ ∪ b)) = 1 |
13 | 12 | wr1 197 |
. . . . . 6
((a⊥ ∪ b) ≡ ((a⊥ ∪ a) ∩ (a⊥ ∪ b))) = 1 |
14 | | wddi3 1109 |
. . . . . . 7
((a⊥ ∪
(a ∩ b)) ≡ ((a⊥ ∪ a) ∩ (a⊥ ∪ b))) = 1 |
15 | 14 | wr1 197 |
. . . . . 6
(((a⊥ ∪
a) ∩ (a⊥ ∪ b)) ≡ (a⊥ ∪ (a ∩ b))) =
1 |
16 | 13, 15 | wr2 371 |
. . . . 5
((a⊥ ∪ b) ≡ (a⊥ ∪ (a ∩ b))) =
1 |
17 | | wa2 192 |
. . . . 5
((b⊥ ∪ a) ≡ (a
∪ b⊥ )) =
1 |
18 | 16, 17 | w2an 373 |
. . . 4
(((a⊥ ∪
b) ∩ (b⊥ ∪ a)) ≡ ((a⊥ ∪ (a ∩ b))
∩ (a ∪ b⊥ ))) = 1 |
19 | | biid 116 |
. . . 4
(((a⊥ ∪
b) ∩ (b⊥ ∪ a)) ≡ ((a⊥ ∪ b) ∩ (b⊥ ∪ a))) = 1 |
20 | | wancom 203 |
. . . 4
(((a ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b)))
≡ ((a⊥ ∪
(a ∩ b)) ∩ (a
∪ b⊥ ))) =
1 |
21 | 18, 19, 20 | w3tr1 374 |
. . 3
(((a⊥ ∪
b) ∩ (b⊥ ∪ a)) ≡ ((a
∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b)))) =
1 |
22 | 5, 21 | wwbmp 205 |
. 2
((a ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b))) =
1 |
23 | 1, 22 | ax-r2 36 |
1
(a ≡1 b) = 1 |