QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  binr2 GIF version

Theorem binr2 518
Description: Pavicic binary logic ax-r2 36 analog. (Contributed by NM, 7-Nov-1997.)
Hypotheses
Ref Expression
binr2.1 (a3 b) = 1
binr2.2 (b3 c) = 1
Assertion
Ref Expression
binr2 (a3 c) = 1

Proof of Theorem binr2
StepHypRef Expression
1 binr2.1 . . . 4 (a3 b) = 1
21i3le 515 . . 3 ab
3 binr2.2 . . . 4 (b3 c) = 1
43i3le 515 . . 3 bc
52, 4letr 137 . 2 ac
65lei3 246 1 (a3 c) = 1
Colors of variables: term
Syntax hints:   = wb 1  1wt 8  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i3 46  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  i3ror  532  i3lor  533  i32or  534  i32an  537
  Copyright terms: Public domain W3C validator