| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > binr3 | GIF version | ||
| Description: Pavicic binary logic ax-r3 439 analog. (Contributed by NM, 7-Nov-1997.) |
| Ref | Expression |
|---|---|
| binr3.1 | (a →3 c) = 1 |
| binr3.2 | (b →3 c) = 1 |
| Ref | Expression |
|---|---|
| binr3 | ((a ∪ b) →3 c) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binr3.1 | . . . . 5 (a →3 c) = 1 | |
| 2 | 1 | i3le 515 | . . . 4 a ≤ c |
| 3 | binr3.2 | . . . . 5 (b →3 c) = 1 | |
| 4 | 3 | i3le 515 | . . . 4 b ≤ c |
| 5 | 2, 4 | le2or 168 | . . 3 (a ∪ b) ≤ (c ∪ c) |
| 6 | oridm 110 | . . 3 (c ∪ c) = c | |
| 7 | 5, 6 | lbtr 139 | . 2 (a ∪ b) ≤ c |
| 8 | 7 | lei3 246 | 1 ((a ∪ b) →3 c) = 1 |
| Colors of variables: term |
| Syntax hints: = wb 1 ∪ wo 6 1wt 8 →3 wi3 14 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: i3ror 532 |
| Copyright terms: Public domain | W3C validator |