Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > i31 | GIF version |
Description: Theorem for Kalmbach implication. (Contributed by NM, 7-Nov-1997.) |
Ref | Expression |
---|---|
i31 | (a →3 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-t 41 | . . 3 1 = (a ∪ a⊥ ) | |
2 | 1 | li3 252 | . 2 (a →3 1) = (a →3 (a ∪ a⊥ )) |
3 | bina3 284 | . 2 (a →3 (a ∪ a⊥ )) = 1 | |
4 | 2, 3 | ax-r2 36 | 1 (a →3 1) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 1wt 8 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 |
This theorem is referenced by: i3aa 521 i3th4 546 |
Copyright terms: Public domain | W3C validator |