Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > com3i | GIF version |
Description: Lemma 3(i) of Kalmbach 83 p. 23. (Contributed by NM, 28-Aug-1997.) |
Ref | Expression |
---|---|
com3i.1 | (a ∩ (a⊥ ∪ b)) = (a ∩ b) |
Ref | Expression |
---|---|
com3i | a C b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anor1 88 | . . . . . . . 8 (a ∩ b⊥ ) = (a⊥ ∪ b)⊥ | |
2 | 1 | con2 67 | . . . . . . 7 (a ∩ b⊥ )⊥ = (a⊥ ∪ b) |
3 | 2 | ran 78 | . . . . . 6 ((a ∩ b⊥ )⊥ ∩ a) = ((a⊥ ∪ b) ∩ a) |
4 | ancom 74 | . . . . . 6 ((a⊥ ∪ b) ∩ a) = (a ∩ (a⊥ ∪ b)) | |
5 | 3, 4 | ax-r2 36 | . . . . 5 ((a ∩ b⊥ )⊥ ∩ a) = (a ∩ (a⊥ ∪ b)) |
6 | com3i.1 | . . . . 5 (a ∩ (a⊥ ∪ b)) = (a ∩ b) | |
7 | 5, 6 | ax-r2 36 | . . . 4 ((a ∩ b⊥ )⊥ ∩ a) = (a ∩ b) |
8 | 7 | lor 70 | . . 3 ((a ∩ b⊥ ) ∪ ((a ∩ b⊥ )⊥ ∩ a)) = ((a ∩ b⊥ ) ∪ (a ∩ b)) |
9 | lea 160 | . . . 4 (a ∩ b⊥ ) ≤ a | |
10 | 9 | oml2 451 | . . 3 ((a ∩ b⊥ ) ∪ ((a ∩ b⊥ )⊥ ∩ a)) = a |
11 | ax-a2 31 | . . 3 ((a ∩ b⊥ ) ∪ (a ∩ b)) = ((a ∩ b) ∪ (a ∩ b⊥ )) | |
12 | 8, 10, 11 | 3tr2 64 | . 2 a = ((a ∩ b) ∪ (a ∩ b⊥ )) |
13 | 12 | df-c1 132 | 1 a C b |
Colors of variables: term |
Syntax hints: = wb 1 C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |