Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oml2 | GIF version |
Description: Orthomodular law. Kalmbach 83 p. 22. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
oml2.1 | a ≤ b |
Ref | Expression |
---|---|
oml2 | (a ∪ (a⊥ ∩ b)) = b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oml 445 | . 2 (a ∪ (a⊥ ∩ (a ∪ b))) = (a ∪ b) | |
2 | oml2.1 | . . . . 5 a ≤ b | |
3 | 2 | df-le2 131 | . . . 4 (a ∪ b) = b |
4 | 3 | lan 77 | . . 3 (a⊥ ∩ (a ∪ b)) = (a⊥ ∩ b) |
5 | 4 | lor 70 | . 2 (a ∪ (a⊥ ∩ (a ∪ b))) = (a ∪ (a⊥ ∩ b)) |
6 | 1, 5, 3 | 3tr2 64 | 1 (a ∪ (a⊥ ∩ b)) = b |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le2 131 |
This theorem is referenced by: oml3 452 comcom 453 com3i 467 lem4 511 lem4.6.6i4j2 1101 |
Copyright terms: Public domain | W3C validator |