Proof of Theorem comdr
Step | Hyp | Ref
| Expression |
1 | | comdr.1 |
. . . . 5
a = ((a ∪ b) ∩
(a ∪ b⊥ )) |
2 | | df-a 40 |
. . . . . 6
((a ∪ b) ∩ (a
∪ b⊥ )) = ((a ∪ b)⊥ ∪ (a ∪ b⊥ )⊥
)⊥ |
3 | | oran 87 |
. . . . . . . . 9
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
4 | 3 | con2 67 |
. . . . . . . 8
(a ∪ b)⊥ = (a⊥ ∩ b⊥ ) |
5 | | oran 87 |
. . . . . . . . 9
(a ∪ b⊥ ) = (a⊥ ∩ b⊥ ⊥
)⊥ |
6 | 5 | con2 67 |
. . . . . . . 8
(a ∪ b⊥ )⊥ = (a⊥ ∩ b⊥ ⊥
) |
7 | 4, 6 | 2or 72 |
. . . . . . 7
((a ∪ b)⊥ ∪ (a ∪ b⊥ )⊥ ) =
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
8 | 7 | ax-r4 37 |
. . . . . 6
((a ∪ b)⊥ ∪ (a ∪ b⊥ )⊥
)⊥ = ((a⊥
∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
))⊥ |
9 | 2, 8 | ax-r2 36 |
. . . . 5
((a ∪ b) ∩ (a
∪ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
))⊥ |
10 | 1, 9 | ax-r2 36 |
. . . 4
a = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
))⊥ |
11 | 10 | con2 67 |
. . 3
a⊥ = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
12 | 11 | df-c1 132 |
. 2
a⊥ C
b⊥ |
13 | 12 | comcom5 458 |
1
a C b |