Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comcom5 | GIF version |
Description: Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
comcom5.1 | a⊥ C b⊥ |
Ref | Expression |
---|---|
comcom5 | a C b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comcom5.1 | . . . . 5 a⊥ C b⊥ | |
2 | 1 | comcom4 455 | . . . 4 a⊥ ⊥ C b⊥ ⊥ |
3 | 2 | df-c2 133 | . . 3 a⊥ ⊥ = ((a⊥ ⊥ ∩ b⊥ ⊥ ) ∪ (a⊥ ⊥ ∩ b⊥ ⊥ ⊥ )) |
4 | ax-a1 30 | . . 3 a = a⊥ ⊥ | |
5 | ax-a1 30 | . . . . 5 b = b⊥ ⊥ | |
6 | 4, 5 | 2an 79 | . . . 4 (a ∩ b) = (a⊥ ⊥ ∩ b⊥ ⊥ ) |
7 | ax-a1 30 | . . . . 5 b⊥ = b⊥ ⊥ ⊥ | |
8 | 4, 7 | 2an 79 | . . . 4 (a ∩ b⊥ ) = (a⊥ ⊥ ∩ b⊥ ⊥ ⊥ ) |
9 | 6, 8 | 2or 72 | . . 3 ((a ∩ b) ∪ (a ∩ b⊥ )) = ((a⊥ ⊥ ∩ b⊥ ⊥ ) ∪ (a⊥ ⊥ ∩ b⊥ ⊥ ⊥ )) |
10 | 3, 4, 9 | 3tr1 63 | . 2 a = ((a ∩ b) ∪ (a ∩ b⊥ )) |
11 | 10 | df-c1 132 | 1 a C b |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: comcom6 459 comcom7 460 comdr 466 df2c1 468 com2an 484 oml4 487 gstho 491 df2i3 498 i3lem2 505 comi31 508 ud1lem1 560 ud1lem3 562 ud4lem1a 577 ud4lem1b 578 ud4lem1c 579 ud4lem1d 580 ud4lem1 581 ud5lem1a 586 |
Copyright terms: Public domain | W3C validator |