Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comanr2 | GIF version |
Description: Commutation law. (Contributed by NM, 26-Nov-1997.) |
Ref | Expression |
---|---|
comanr2 | b C (a ∩ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coman2 186 | . 2 (a ∩ b) C b | |
2 | 1 | comcom 453 | 1 b C (a ∩ b) |
Colors of variables: term |
Syntax hints: C wc 3 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: ud3lem1a 566 u4lemaa 603 u4lemana 608 u3lemab 612 u4lemab 613 u5lemab 614 u2lemanb 616 u3lemanb 617 u4lemanb 618 u5lemanb 619 u2lemc1 681 u4lemc1 683 u5lemc1b 685 u4lemle2 718 u4lem5 764 u4lem6 768 u24lem 770 u3lem13b 790 3vth7 810 1oa 820 oale 829 mlalem 832 bi3 839 bi4 840 mhlem1 877 |
Copyright terms: Public domain | W3C validator |