| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > comi1 | GIF version | ||
| Description: Commutation expressed with →1 . (Contributed by NM, 1-Dec-1999.) |
| Ref | Expression |
|---|---|
| comi1.1 | a C b |
| Ref | Expression |
|---|---|
| comi1 | b ≤ (a →1 b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 74 | . . . . 5 (b ∩ a) = (a ∩ b) | |
| 2 | 1 | ax-r5 38 | . . . 4 ((b ∩ a) ∪ (b ∩ a⊥ )) = ((a ∩ b) ∪ (b ∩ a⊥ )) |
| 3 | ax-a2 31 | . . . 4 ((a ∩ b) ∪ (b ∩ a⊥ )) = ((b ∩ a⊥ ) ∪ (a ∩ b)) | |
| 4 | 2, 3 | ax-r2 36 | . . 3 ((b ∩ a) ∪ (b ∩ a⊥ )) = ((b ∩ a⊥ ) ∪ (a ∩ b)) |
| 5 | lear 161 | . . . 4 (b ∩ a⊥ ) ≤ a⊥ | |
| 6 | 5 | leror 152 | . . 3 ((b ∩ a⊥ ) ∪ (a ∩ b)) ≤ (a⊥ ∪ (a ∩ b)) |
| 7 | 4, 6 | bltr 138 | . 2 ((b ∩ a) ∪ (b ∩ a⊥ )) ≤ (a⊥ ∪ (a ∩ b)) |
| 8 | comi1.1 | . . . 4 a C b | |
| 9 | 8 | comcom 453 | . . 3 b C a |
| 10 | 9 | df-c2 133 | . 2 b = ((b ∩ a) ∪ (b ∩ a⊥ )) |
| 11 | df-i1 44 | . 2 (a →1 b) = (a⊥ ∪ (a ∩ b)) | |
| 12 | 7, 10, 11 | le3tr1 140 | 1 b ≤ (a →1 b) |
| Colors of variables: term |
| Syntax hints: ≤ wle 2 C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |