Proof of Theorem comcom
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . . . . . . . . 10
(a⊥ ∪ b) = (b ∪
a⊥ ) |
2 | 1 | ran 78 |
. . . . . . . . 9
((a⊥ ∪ b) ∩ b) =
((b ∪ a⊥ ) ∩ b) |
3 | | ancom 74 |
. . . . . . . . 9
((b ∪ a⊥ ) ∩ b) = (b ∩
(b ∪ a⊥ )) |
4 | 2, 3 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∪ b) ∩ b) =
(b ∩ (b ∪ a⊥ )) |
5 | | anabs 121 |
. . . . . . . 8
(b ∩ (b ∪ a⊥ )) = b |
6 | 4, 5 | ax-r2 36 |
. . . . . . 7
((a⊥ ∪ b) ∩ b) =
b |
7 | 6 | lan 77 |
. . . . . 6
((a⊥ ∪ b⊥ ) ∩ ((a⊥ ∪ b) ∩ b)) =
((a⊥ ∪ b⊥ ) ∩ b) |
8 | | comcom.1 |
. . . . . . . . . . . 12
a C b |
9 | 8 | df-c2 133 |
. . . . . . . . . . 11
a = ((a ∩ b) ∪
(a ∩ b⊥ )) |
10 | | df-a 40 |
. . . . . . . . . . . 12
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
11 | | anor1 88 |
. . . . . . . . . . . 12
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
12 | 10, 11 | 2or 72 |
. . . . . . . . . . 11
((a ∩ b) ∪ (a
∩ b⊥ )) = ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥ ) |
13 | 9, 12 | ax-r2 36 |
. . . . . . . . . 10
a = ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥ ) |
14 | 13 | ax-r4 37 |
. . . . . . . . 9
a⊥ = ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥
)⊥ |
15 | | df-a 40 |
. . . . . . . . . 10
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥
)⊥ |
16 | 15 | ax-r1 35 |
. . . . . . . . 9
((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ b)⊥ )⊥ =
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) |
17 | 14, 16 | ax-r2 36 |
. . . . . . . 8
a⊥ = ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) |
18 | 17 | ran 78 |
. . . . . . 7
(a⊥ ∩ b) = (((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) ∩ b) |
19 | | anass 76 |
. . . . . . 7
(((a⊥ ∪
b⊥ ) ∩ (a⊥ ∪ b)) ∩ b) =
((a⊥ ∪ b⊥ ) ∩ ((a⊥ ∪ b) ∩ b)) |
20 | 18, 19 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ b) = ((a⊥ ∪ b⊥ ) ∩ ((a⊥ ∪ b) ∩ b)) |
21 | 10 | con2 67 |
. . . . . . 7
(a ∩ b)⊥ = (a⊥ ∪ b⊥ ) |
22 | 21 | ran 78 |
. . . . . 6
((a ∩ b)⊥ ∩ b) = ((a⊥ ∪ b⊥ ) ∩ b) |
23 | 7, 20, 22 | 3tr1 63 |
. . . . 5
(a⊥ ∩ b) = ((a ∩
b)⊥ ∩ b) |
24 | 23 | lor 70 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ b)) = ((a ∩
b) ∪ ((a ∩ b)⊥ ∩ b)) |
25 | 24 | ax-r1 35 |
. . 3
((a ∩ b) ∪ ((a
∩ b)⊥ ∩ b)) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
26 | | ax-a2 31 |
. . . . . 6
((a ∩ b) ∪ b) =
(b ∪ (a ∩ b)) |
27 | | ancom 74 |
. . . . . . . 8
(a ∩ b) = (b ∩
a) |
28 | 27 | lor 70 |
. . . . . . 7
(b ∪ (a ∩ b)) =
(b ∪ (b ∩ a)) |
29 | | orabs 120 |
. . . . . . 7
(b ∪ (b ∩ a)) =
b |
30 | 28, 29 | ax-r2 36 |
. . . . . 6
(b ∪ (a ∩ b)) =
b |
31 | 26, 30 | ax-r2 36 |
. . . . 5
((a ∩ b) ∪ b) =
b |
32 | 31 | df-le1 130 |
. . . 4
(a ∩ b) ≤ b |
33 | 32 | oml2 451 |
. . 3
((a ∩ b) ∪ ((a
∩ b)⊥ ∩ b)) = b |
34 | | ancom 74 |
. . . 4
(a⊥ ∩ b) = (b ∩
a⊥ ) |
35 | 27, 34 | 2or 72 |
. . 3
((a ∩ b) ∪ (a⊥ ∩ b)) = ((b ∩
a) ∪ (b ∩ a⊥ )) |
36 | 25, 33, 35 | 3tr2 64 |
. 2
b = ((b ∩ a) ∪
(b ∩ a⊥ )) |
37 | 36 | df-c1 132 |
1
b C a |