Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > i1com | GIF version |
Description: Commutation expressed with →1 . (Contributed by NM, 1-Dec-1999.) |
Ref | Expression |
---|---|
i1com.1 | b ≤ (a →1 b) |
Ref | Expression |
---|---|
i1com | a C b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 74 | . . . 4 (b ∩ (a →1 b)) = ((a →1 b) ∩ b) | |
2 | i1com.1 | . . . . 5 b ≤ (a →1 b) | |
3 | 2 | df2le2 136 | . . . 4 (b ∩ (a →1 b)) = b |
4 | u1lemab 610 | . . . . 5 ((a →1 b) ∩ b) = ((a ∩ b) ∪ (a⊥ ∩ b)) | |
5 | ancom 74 | . . . . . 6 (a ∩ b) = (b ∩ a) | |
6 | ancom 74 | . . . . . 6 (a⊥ ∩ b) = (b ∩ a⊥ ) | |
7 | 5, 6 | 2or 72 | . . . . 5 ((a ∩ b) ∪ (a⊥ ∩ b)) = ((b ∩ a) ∪ (b ∩ a⊥ )) |
8 | 4, 7 | ax-r2 36 | . . . 4 ((a →1 b) ∩ b) = ((b ∩ a) ∪ (b ∩ a⊥ )) |
9 | 1, 3, 8 | 3tr2 64 | . . 3 b = ((b ∩ a) ∪ (b ∩ a⊥ )) |
10 | 9 | df-c1 132 | . 2 b C a |
11 | 10 | comcom 453 | 1 a C b |
Colors of variables: term |
Syntax hints: ≤ wle 2 C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: comanb 872 |
Copyright terms: Public domain | W3C validator |