Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wcom0 | GIF version |
Description: Commutation with 0. Kalmbach 83 p. 20. (Contributed by NM, 13-Oct-1997.) |
Ref | Expression |
---|---|
wcom0 | C (a, 0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comm0 178 | . . . 4 a C 0 | |
2 | 1 | df-c2 133 | . . 3 a = ((a ∩ 0) ∪ (a ∩ 0⊥ )) |
3 | 2 | bi1 118 | . 2 (a ≡ ((a ∩ 0) ∪ (a ∩ 0⊥ ))) = 1 |
4 | 3 | wdf-c1 383 | 1 C (a, 0) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 0wf 9 C wcmtr 29 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-c1 132 df-c2 133 df-cmtr 134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |