QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wcom0 GIF version

Theorem wcom0 407
Description: Commutation with 0. Kalmbach 83 p. 20. (Contributed by NM, 13-Oct-1997.)
Assertion
Ref Expression
wcom0 C (a, 0) = 1

Proof of Theorem wcom0
StepHypRef Expression
1 comm0 178 . . . 4 a C 0
21df-c2 133 . . 3 a = ((a ∩ 0) ∪ (a ∩ 0 ))
32bi1 118 . 2 (a ≡ ((a ∩ 0) ∪ (a ∩ 0 ))) = 1
43wdf-c1 383 1 C (a, 0) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  1wt 8  0wf 9   C wcmtr 29
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le 129  df-le1 130  df-le2 131  df-c1 132  df-c2 133  df-cmtr 134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator