Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > or0 | GIF version |
Description: Disjunction with 0. (Contributed by NM, 10-Aug-1997.) |
Ref | Expression |
---|---|
or0 | (a ∪ 0) = a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff2 100 | . . . 4 0 = (a ∪ a⊥ )⊥ | |
2 | ax-a2 31 | . . . . 5 (a ∪ a⊥ ) = (a⊥ ∪ a) | |
3 | 2 | ax-r4 37 | . . . 4 (a ∪ a⊥ )⊥ = (a⊥ ∪ a)⊥ |
4 | 1, 3 | ax-r2 36 | . . 3 0 = (a⊥ ∪ a)⊥ |
5 | 4 | lor 70 | . 2 (a ∪ 0) = (a ∪ (a⊥ ∪ a)⊥ ) |
6 | ax-a5 34 | . 2 (a ∪ (a⊥ ∪ a)⊥ ) = a | |
7 | 5, 6 | ax-r2 36 | 1 (a ∪ 0) = a |
Copyright terms: Public domain | W3C validator |