Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > df-id3 | GIF version |
Description: Define asymmetrical identity (for "Non-Orthomodular Models..." paper). (Contributed by NM, 7-Feb-1999.) |
Ref | Expression |
---|---|
df-id3 | (a ≡3 b) = ((a⊥ ∪ b) ∩ (a ∪ (a⊥ ∩ b⊥ ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wva | . . 3 term a | |
2 | wvb | . . 3 term b | |
3 | 1, 2 | wid3 20 | . 2 term (a ≡3 b) |
4 | 1 | wn 4 | . . . 4 term a⊥ |
5 | 4, 2 | wo 6 | . . 3 term (a⊥ ∪ b) |
6 | 2 | wn 4 | . . . . 5 term b⊥ |
7 | 4, 6 | wa 7 | . . . 4 term (a⊥ ∩ b⊥ ) |
8 | 1, 7 | wo 6 | . . 3 term (a ∪ (a⊥ ∩ b⊥ )) |
9 | 5, 8 | wa 7 | . 2 term ((a⊥ ∪ b) ∩ (a ∪ (a⊥ ∩ b⊥ ))) |
10 | 3, 9 | wb 1 | 1 wff (a ≡3 b) = ((a⊥ ∪ b) ∩ (a ∪ (a⊥ ∩ b⊥ ))) |
Colors of variables: term |
This definition is referenced by: nomb32 300 nom23 316 nom54 335 lem3.3.7i3e1 1066 lem3.3.7i3e2 1067 wdid0id3 1114 |
Copyright terms: Public domain | W3C validator |