Proof of Theorem nom54
Step | Hyp | Ref
| Expression |
1 | | ancom 74 |
. . . . . . . 8
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
2 | | anor3 90 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
3 | 1, 2 | ax-r2 36 |
. . . . . . 7
(b⊥ ∩ a⊥ ) = (a ∪ b)⊥ |
4 | 3 | lor 70 |
. . . . . 6
(b⊥
⊥ ∪ (b⊥ ∩ a⊥ )) = (b⊥ ⊥ ∪
(a ∪ b)⊥ ) |
5 | 3 | ax-r4 37 |
. . . . . . . 8
(b⊥ ∩ a⊥ )⊥ = (a ∪ b)⊥
⊥ |
6 | 5 | lan 77 |
. . . . . . 7
(b⊥
⊥ ∩ (b⊥ ∩ a⊥ )⊥ ) =
(b⊥ ⊥
∩ (a ∪ b)⊥ ⊥
) |
7 | 6 | lor 70 |
. . . . . 6
(b⊥ ∪ (b⊥ ⊥ ∩
(b⊥ ∩ a⊥ )⊥ )) =
(b⊥ ∪ (b⊥ ⊥ ∩
(a ∪ b)⊥ ⊥
)) |
8 | 4, 7 | 2an 79 |
. . . . 5
((b⊥
⊥ ∪ (b⊥ ∩ a⊥ )) ∩ (b⊥ ∪ (b⊥ ⊥ ∩
(b⊥ ∩ a⊥ )⊥ ))) =
((b⊥ ⊥
∪ (a ∪ b)⊥ ) ∩ (b⊥ ∪ (b⊥ ⊥ ∩
(a ∪ b)⊥ ⊥
))) |
9 | | df-id3 52 |
. . . . 5
(b⊥ ≡3
(b⊥ ∩ a⊥ )) = ((b⊥ ⊥ ∪
(b⊥ ∩ a⊥ )) ∩ (b⊥ ∪ (b⊥ ⊥ ∩
(b⊥ ∩ a⊥ )⊥
))) |
10 | | df-id3 52 |
. . . . 5
(b⊥ ≡3
(a ∪ b)⊥ ) = ((b⊥ ⊥ ∪
(a ∪ b)⊥ ) ∩ (b⊥ ∪ (b⊥ ⊥ ∩
(a ∪ b)⊥ ⊥
))) |
11 | 8, 9, 10 | 3tr1 63 |
. . . 4
(b⊥ ≡3
(b⊥ ∩ a⊥ )) = (b⊥ ≡3 (a ∪ b)⊥ ) |
12 | 11 | ax-r1 35 |
. . 3
(b⊥ ≡3
(a ∪ b)⊥ ) = (b⊥ ≡3 (b⊥ ∩ a⊥ )) |
13 | | nom23 316 |
. . 3
(b⊥ ≡3
(b⊥ ∩ a⊥ )) = (b⊥ →1 a⊥ ) |
14 | 12, 13 | ax-r2 36 |
. 2
(b⊥ ≡3
(a ∪ b)⊥ ) = (b⊥ →1 a⊥ ) |
15 | | nomcon4 305 |
. 2
((a ∪ b) ≡4 b) = (b⊥ ≡3 (a ∪ b)⊥ ) |
16 | | i2i1 267 |
. 2
(a →2 b) = (b⊥ →1 a⊥ ) |
17 | 14, 15, 16 | 3tr1 63 |
1
((a ∪ b) ≡4 b) = (a
→2 b) |