QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  nom54 GIF version

Theorem nom54 335
Description: Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.)
Assertion
Ref Expression
nom54 ((ab) ≡4 b) = (a2 b)

Proof of Theorem nom54
StepHypRef Expression
1 ancom 74 . . . . . . . 8 (ba ) = (ab )
2 anor3 90 . . . . . . . 8 (ab ) = (ab)
31, 2ax-r2 36 . . . . . . 7 (ba ) = (ab)
43lor 70 . . . . . 6 (b ∪ (ba )) = (b ∪ (ab) )
53ax-r4 37 . . . . . . . 8 (ba ) = (ab)
65lan 77 . . . . . . 7 (b ∩ (ba ) ) = (b ∩ (ab) )
76lor 70 . . . . . 6 (b ∪ (b ∩ (ba ) )) = (b ∪ (b ∩ (ab) ))
84, 72an 79 . . . . 5 ((b ∪ (ba )) ∩ (b ∪ (b ∩ (ba ) ))) = ((b ∪ (ab) ) ∩ (b ∪ (b ∩ (ab) )))
9 df-id3 52 . . . . 5 (b3 (ba )) = ((b ∪ (ba )) ∩ (b ∪ (b ∩ (ba ) )))
10 df-id3 52 . . . . 5 (b3 (ab) ) = ((b ∪ (ab) ) ∩ (b ∪ (b ∩ (ab) )))
118, 9, 103tr1 63 . . . 4 (b3 (ba )) = (b3 (ab) )
1211ax-r1 35 . . 3 (b3 (ab) ) = (b3 (ba ))
13 nom23 316 . . 3 (b3 (ba )) = (b1 a )
1412, 13ax-r2 36 . 2 (b3 (ab) ) = (b1 a )
15 nomcon4 305 . 2 ((ab) ≡4 b) = (b3 (ab) )
16 i2i1 267 . 2 (a2 b) = (b1 a )
1714, 15, 163tr1 63 1 ((ab) ≡4 b) = (a2 b)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  1 wi1 12  2 wi2 13  3 wid3 20  4 wid4 21
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-i1 44  df-i2 45  df-id1 50  df-id2 51  df-id3 52  df-id4 53  df-le1 130  df-le2 131
This theorem is referenced by:  nom61  338
  Copyright terms: Public domain W3C validator