Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > df-id2 | GIF version |
Description: Define asymmetrical identity (for "Non-Orthomodular Models..." paper). (Contributed by NM, 7-Feb-1999.) |
Ref | Expression |
---|---|
df-id2 | (a ≡2 b) = ((a ∪ b⊥ ) ∩ (b ∪ (a⊥ ∩ b⊥ ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wva | . . 3 term a | |
2 | wvb | . . 3 term b | |
3 | 1, 2 | wid2 19 | . 2 term (a ≡2 b) |
4 | 2 | wn 4 | . . . 4 term b⊥ |
5 | 1, 4 | wo 6 | . . 3 term (a ∪ b⊥ ) |
6 | 1 | wn 4 | . . . . 5 term a⊥ |
7 | 6, 4 | wa 7 | . . . 4 term (a⊥ ∩ b⊥ ) |
8 | 2, 7 | wo 6 | . . 3 term (b ∪ (a⊥ ∩ b⊥ )) |
9 | 5, 8 | wa 7 | . 2 term ((a ∪ b⊥ ) ∩ (b ∪ (a⊥ ∩ b⊥ ))) |
10 | 3, 9 | wb 1 | 1 wff (a ≡2 b) = ((a ∪ b⊥ ) ∩ (b ∪ (a⊥ ∩ b⊥ ))) |
Colors of variables: term |
This definition is referenced by: nomb32 300 nomcon1 302 nomcon2 303 nom22 315 nom51 332 lem3.3.7i2e1 1063 lem3.3.7i2e2 1064 wdid0id2 1113 |
Copyright terms: Public domain | W3C validator |