Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > nomb32 | GIF version |
Description: Lemma for "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.) |
Ref | Expression |
---|---|
nomb32 | (a ≡3 b) = (b ≡2 a) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . . 3 (a⊥ ∪ b) = (b ∪ a⊥ ) | |
2 | ancom 74 | . . . 4 (a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) | |
3 | 2 | lor 70 | . . 3 (a ∪ (a⊥ ∩ b⊥ )) = (a ∪ (b⊥ ∩ a⊥ )) |
4 | 1, 3 | 2an 79 | . 2 ((a⊥ ∪ b) ∩ (a ∪ (a⊥ ∩ b⊥ ))) = ((b ∪ a⊥ ) ∩ (a ∪ (b⊥ ∩ a⊥ ))) |
5 | df-id3 52 | . 2 (a ≡3 b) = ((a⊥ ∪ b) ∩ (a ∪ (a⊥ ∩ b⊥ ))) | |
6 | df-id2 51 | . 2 (b ≡2 a) = ((b ∪ a⊥ ) ∩ (a ∪ (b⊥ ∩ a⊥ ))) | |
7 | 4, 5, 6 | 3tr1 63 | 1 (a ≡3 b) = (b ≡2 a) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 ≡2 wid2 19 ≡3 wid3 20 |
This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-id2 51 df-id3 52 |
This theorem is referenced by: nomcon3 304 nomcon4 305 nom32 321 nom33 322 nom62 339 nom63 340 |
Copyright terms: Public domain | W3C validator |