QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  nomb32 GIF version

Theorem nomb32 300
Description: Lemma for "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.)
Assertion
Ref Expression
nomb32 (a3 b) = (b2 a)

Proof of Theorem nomb32
StepHypRef Expression
1 ax-a2 31 . . 3 (ab) = (ba )
2 ancom 74 . . . 4 (ab ) = (ba )
32lor 70 . . 3 (a ∪ (ab )) = (a ∪ (ba ))
41, 32an 79 . 2 ((ab) ∩ (a ∪ (ab ))) = ((ba ) ∩ (a ∪ (ba )))
5 df-id3 52 . 2 (a3 b) = ((ab) ∩ (a ∪ (ab )))
6 df-id2 51 . 2 (b2 a) = ((ba ) ∩ (a ∪ (ba )))
74, 5, 63tr1 63 1 (a3 b) = (b2 a)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  2 wid2 19  3 wid3 20
This theorem was proved from axioms:  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-id2 51  df-id3 52
This theorem is referenced by:  nomcon3  304  nomcon4  305  nom32  321  nom33  322  nom62  339  nom63  340
  Copyright terms: Public domain W3C validator