Proof of Theorem wdid0id3
Step | Hyp | Ref
| Expression |
1 | | df-id3 52 |
. 2
(a ≡3 b) = ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b⊥ ))) |
2 | | df-id0 49 |
. . . . 5
(a ≡0 b) = ((a⊥ ∪ b) ∩ (b⊥ ∪ a)) |
3 | 2 | ax-r1 35 |
. . . 4
((a⊥ ∪ b) ∩ (b⊥ ∪ a)) = (a
≡0 b) |
4 | | wdid0id5.1 |
. . . 4
(a ≡0 b) = 1 |
5 | 3, 4 | ax-r2 36 |
. . 3
((a⊥ ∪ b) ∩ (b⊥ ∪ a)) = 1 |
6 | | wa4 194 |
. . . . . . . 8
(((a ∪ b⊥ ) ∪ (a ∪ a⊥ )) ≡ (a ∪ a⊥ )) = 1 |
7 | 6 | wleoa 376 |
. . . . . . 7
(((a ∪ b⊥ ) ∩ (a ∪ a⊥ )) ≡ (a ∪ b⊥ )) = 1 |
8 | 7 | wr1 197 |
. . . . . 6
((a ∪ b⊥ ) ≡ ((a ∪ b⊥ ) ∩ (a ∪ a⊥ ))) = 1 |
9 | | wancom 203 |
. . . . . 6
(((a ∪ b⊥ ) ∩ (a ∪ a⊥ )) ≡ ((a ∪ a⊥ ) ∩ (a ∪ b⊥ ))) = 1 |
10 | 8, 9 | wr2 371 |
. . . . 5
((a ∪ b⊥ ) ≡ ((a ∪ a⊥ ) ∩ (a ∪ b⊥ ))) = 1 |
11 | | wa2 192 |
. . . . 5
((b⊥ ∪ a) ≡ (a
∪ b⊥ )) =
1 |
12 | | wddi3 1109 |
. . . . 5
((a ∪ (a⊥ ∩ b⊥ )) ≡ ((a ∪ a⊥ ) ∩ (a ∪ b⊥ ))) = 1 |
13 | 10, 11, 12 | w3tr1 374 |
. . . 4
((b⊥ ∪ a) ≡ (a
∪ (a⊥ ∩ b⊥ ))) = 1 |
14 | 13 | wlan 370 |
. . 3
(((a⊥ ∪
b) ∩ (b⊥ ∪ a)) ≡ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b⊥ )))) = 1 |
15 | 5, 14 | wwbmp 205 |
. 2
((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b⊥ ))) = 1 |
16 | 1, 15 | ax-r2 36 |
1
(a ≡3 b) = 1 |