Proof of Theorem lem3.3.7i3e2
Step | Hyp | Ref
| Expression |
1 | | anor3 90 |
. . . . . . . . . 10
(a⊥ ∩ (a ∩ b)⊥ ) = (a ∪ (a ∩
b))⊥ |
2 | 1 | lor 70 |
. . . . . . . . 9
(a ∪ (a⊥ ∩ (a ∩ b)⊥ )) = (a ∪ (a ∪
(a ∩ b))⊥ ) |
3 | 2 | lan 77 |
. . . . . . . 8
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ (a⊥ ∩ (a ∩ b)⊥ ))) = ((a⊥ ∪ (a ∩ b))
∩ (a ∪ (a ∪ (a ∩
b))⊥ )) |
4 | | orabs 120 |
. . . . . . . . . . 11
(a ∪ (a ∩ b)) =
a |
5 | 4 | ax-r4 37 |
. . . . . . . . . 10
(a ∪ (a ∩ b))⊥ = a⊥ |
6 | 5 | lor 70 |
. . . . . . . . 9
(a ∪ (a ∪ (a ∩
b))⊥ ) = (a ∪ a⊥ ) |
7 | 6 | lan 77 |
. . . . . . . 8
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ (a ∪ (a ∩ b))⊥ )) = ((a⊥ ∪ (a ∩ b))
∩ (a ∪ a⊥ )) |
8 | | df-t 41 |
. . . . . . . . . . 11
1 = (a ∪ a⊥ ) |
9 | 8 | ax-r1 35 |
. . . . . . . . . 10
(a ∪ a⊥ ) = 1 |
10 | 9 | lan 77 |
. . . . . . . . 9
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ a⊥ )) = ((a⊥ ∪ (a ∩ b))
∩ 1) |
11 | | an1 106 |
. . . . . . . . 9
((a⊥ ∪
(a ∩ b)) ∩ 1) = (a⊥ ∪ (a ∩ b)) |
12 | | ax-a2 31 |
. . . . . . . . 9
(a⊥ ∪ (a ∩ b)) =
((a ∩ b) ∪ a⊥ ) |
13 | 10, 11, 12 | 3tr 65 |
. . . . . . . 8
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ a⊥ )) = ((a ∩ b) ∪
a⊥ ) |
14 | 3, 7, 13 | 3tr 65 |
. . . . . . 7
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ (a⊥ ∩ (a ∩ b)⊥ ))) = ((a ∩ b) ∪
a⊥ ) |
15 | | lea 160 |
. . . . . . . . . . 11
(a ∩ b) ≤ a |
16 | 15 | df-le2 131 |
. . . . . . . . . 10
((a ∩ b) ∪ a) =
a |
17 | 16 | ax-r1 35 |
. . . . . . . . 9
a = ((a ∩ b) ∪
a) |
18 | 17 | ax-r4 37 |
. . . . . . . 8
a⊥ = ((a ∩ b) ∪
a)⊥ |
19 | 18 | lor 70 |
. . . . . . 7
((a ∩ b) ∪ a⊥ ) = ((a ∩ b) ∪
((a ∩ b) ∪ a)⊥ ) |
20 | | anor3 90 |
. . . . . . . . 9
((a ∩ b)⊥ ∩ a⊥ ) = ((a ∩ b) ∪
a)⊥ |
21 | 20 | ax-r1 35 |
. . . . . . . 8
((a ∩ b) ∪ a)⊥ = ((a ∩ b)⊥ ∩ a⊥ ) |
22 | 21 | lor 70 |
. . . . . . 7
((a ∩ b) ∪ ((a
∩ b) ∪ a)⊥ ) = ((a ∩ b) ∪
((a ∩ b)⊥ ∩ a⊥ )) |
23 | 14, 19, 22 | 3tr 65 |
. . . . . 6
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ (a⊥ ∩ (a ∩ b)⊥ ))) = ((a ∩ b) ∪
((a ∩ b)⊥ ∩ a⊥ )) |
24 | | an1r 107 |
. . . . . . 7
(1 ∩ ((a ∩ b) ∪ ((a
∩ b)⊥ ∩ a⊥ ))) = ((a ∩ b) ∪
((a ∩ b)⊥ ∩ a⊥ )) |
25 | 24 | ax-r1 35 |
. . . . . 6
((a ∩ b) ∪ ((a
∩ b)⊥ ∩ a⊥ )) = (1 ∩ ((a ∩ b) ∪
((a ∩ b)⊥ ∩ a⊥ ))) |
26 | 23, 25 | ax-r2 36 |
. . . . 5
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ (a⊥ ∩ (a ∩ b)⊥ ))) = (1 ∩ ((a ∩ b) ∪
((a ∩ b)⊥ ∩ a⊥ ))) |
27 | | or1 104 |
. . . . . . 7
(b⊥ ∪ 1) =
1 |
28 | 27 | ax-r1 35 |
. . . . . 6
1 = (b⊥ ∪
1) |
29 | 28 | ran 78 |
. . . . 5
(1 ∩ ((a ∩ b) ∪ ((a
∩ b)⊥ ∩ a⊥ ))) = ((b⊥ ∪ 1) ∩ ((a ∩ b) ∪
((a ∩ b)⊥ ∩ a⊥ ))) |
30 | 8 | lor 70 |
. . . . . 6
(b⊥ ∪ 1) =
(b⊥ ∪ (a ∪ a⊥ )) |
31 | 30 | ran 78 |
. . . . 5
((b⊥ ∪ 1) ∩
((a ∩ b) ∪ ((a
∩ b)⊥ ∩ a⊥ ))) = ((b⊥ ∪ (a ∪ a⊥ )) ∩ ((a ∩ b) ∪
((a ∩ b)⊥ ∩ a⊥ ))) |
32 | 26, 29, 31 | 3tr 65 |
. . . 4
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ (a⊥ ∩ (a ∩ b)⊥ ))) = ((b⊥ ∪ (a ∪ a⊥ )) ∩ ((a ∩ b) ∪
((a ∩ b)⊥ ∩ a⊥ ))) |
33 | | ax-a2 31 |
. . . . . 6
(a ∪ a⊥ ) = (a⊥ ∪ a) |
34 | 33 | lor 70 |
. . . . 5
(b⊥ ∪ (a ∪ a⊥ )) = (b⊥ ∪ (a⊥ ∪ a)) |
35 | 34 | ran 78 |
. . . 4
((b⊥ ∪
(a ∪ a⊥ )) ∩ ((a ∩ b) ∪
((a ∩ b)⊥ ∩ a⊥ ))) = ((b⊥ ∪ (a⊥ ∪ a)) ∩ ((a
∩ b) ∪ ((a ∩ b)⊥ ∩ a⊥ ))) |
36 | | ax-a3 32 |
. . . . . 6
((b⊥ ∪ a⊥ ) ∪ a) = (b⊥ ∪ (a⊥ ∪ a)) |
37 | 36 | ax-r1 35 |
. . . . 5
(b⊥ ∪ (a⊥ ∪ a)) = ((b⊥ ∪ a⊥ ) ∪ a) |
38 | 37 | ran 78 |
. . . 4
((b⊥ ∪
(a⊥ ∪ a)) ∩ ((a
∩ b) ∪ ((a ∩ b)⊥ ∩ a⊥ ))) = (((b⊥ ∪ a⊥ ) ∪ a) ∩ ((a
∩ b) ∪ ((a ∩ b)⊥ ∩ a⊥ ))) |
39 | 32, 35, 38 | 3tr 65 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ (a⊥ ∩ (a ∩ b)⊥ ))) = (((b⊥ ∪ a⊥ ) ∪ a) ∩ ((a
∩ b) ∪ ((a ∩ b)⊥ ∩ a⊥ ))) |
40 | | ax-a2 31 |
. . . . 5
(b⊥ ∪ a⊥ ) = (a⊥ ∪ b⊥ ) |
41 | 40 | ax-r5 38 |
. . . 4
((b⊥ ∪ a⊥ ) ∪ a) = ((a⊥ ∪ b⊥ ) ∪ a) |
42 | 41 | ran 78 |
. . 3
(((b⊥ ∪
a⊥ ) ∪ a) ∩ ((a
∩ b) ∪ ((a ∩ b)⊥ ∩ a⊥ ))) = (((a⊥ ∪ b⊥ ) ∪ a) ∩ ((a
∩ b) ∪ ((a ∩ b)⊥ ∩ a⊥ ))) |
43 | | oran3 93 |
. . . . 5
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
44 | 43 | ax-r5 38 |
. . . 4
((a⊥ ∪ b⊥ ) ∪ a) = ((a ∩
b)⊥ ∪ a) |
45 | 44 | ran 78 |
. . 3
(((a⊥ ∪
b⊥ ) ∪ a) ∩ ((a
∩ b) ∪ ((a ∩ b)⊥ ∩ a⊥ ))) = (((a ∩ b)⊥ ∪ a) ∩ ((a
∩ b) ∪ ((a ∩ b)⊥ ∩ a⊥ ))) |
46 | 39, 42, 45 | 3tr 65 |
. 2
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ (a⊥ ∩ (a ∩ b)⊥ ))) = (((a ∩ b)⊥ ∪ a) ∩ ((a
∩ b) ∪ ((a ∩ b)⊥ ∩ a⊥ ))) |
47 | | df-id3 52 |
. 2
(a ≡3 (a ∩ b)) =
((a⊥ ∪ (a ∩ b))
∩ (a ∪ (a⊥ ∩ (a ∩ b)⊥ ))) |
48 | | df-id3 52 |
. 2
((a ∩ b) ≡3 a) = (((a ∩
b)⊥ ∪ a) ∩ ((a
∩ b) ∪ ((a ∩ b)⊥ ∩ a⊥ ))) |
49 | 46, 47, 48 | 3tr1 63 |
1
(a ≡3 (a ∩ b)) =
((a ∩ b) ≡3 a) |