Proof of Theorem lem3.3.7i3e1
Step | Hyp | Ref
| Expression |
1 | | anass 76 |
. . . . . 6
((a⊥ ∩ a) ∩ b) =
(a⊥ ∩ (a ∩ b)) |
2 | 1 | ax-r1 35 |
. . . . 5
(a⊥ ∩ (a ∩ b)) =
((a⊥ ∩ a) ∩ b) |
3 | 2 | ax-r5 38 |
. . . 4
((a⊥ ∩
(a ∩ b)) ∪ (a⊥ ∩ (a ∩ b)⊥ )) = (((a⊥ ∩ a) ∩ b)
∪ (a⊥ ∩ (a ∩ b)⊥ )) |
4 | 3 | ax-r5 38 |
. . 3
(((a⊥ ∩
(a ∩ b)) ∪ (a⊥ ∩ (a ∩ b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
((((a⊥ ∩ a) ∩ b)
∪ (a⊥ ∩ (a ∩ b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) |
5 | | ancom 74 |
. . . . . 6
(a⊥ ∩ a) = (a ∩
a⊥ ) |
6 | 5 | ran 78 |
. . . . 5
((a⊥ ∩ a) ∩ b) =
((a ∩ a⊥ ) ∩ b) |
7 | 6 | ax-r5 38 |
. . . 4
(((a⊥ ∩
a) ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) = (((a ∩ a⊥ ) ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) |
8 | 7 | ax-r5 38 |
. . 3
((((a⊥ ∩
a) ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
((((a ∩ a⊥ ) ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) |
9 | | dff 101 |
. . . . . . . 8
0 = (a ∩ a⊥ ) |
10 | 9 | ax-r1 35 |
. . . . . . 7
(a ∩ a⊥ ) = 0 |
11 | 10 | ran 78 |
. . . . . 6
((a ∩ a⊥ ) ∩ b) = (0 ∩ b) |
12 | 11 | ax-r5 38 |
. . . . 5
(((a ∩ a⊥ ) ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) = ((0 ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) |
13 | 12 | ax-r5 38 |
. . . 4
((((a ∩ a⊥ ) ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
(((0 ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) |
14 | | an0r 109 |
. . . . . 6
(0 ∩ b) = 0 |
15 | 14 | ax-r5 38 |
. . . . 5
((0 ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) = (0 ∪ (a⊥ ∩ (a ∩ b)⊥ )) |
16 | 15 | ax-r5 38 |
. . . 4
(((0 ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
((0 ∪ (a⊥ ∩
(a ∩ b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) |
17 | | or0r 103 |
. . . . . 6
(0 ∪ (a⊥ ∩
(a ∩ b)⊥ )) = (a⊥ ∩ (a ∩ b)⊥ ) |
18 | 17 | ax-r5 38 |
. . . . 5
((0 ∪ (a⊥ ∩
(a ∩ b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
((a⊥ ∩ (a ∩ b)⊥ ) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) |
19 | | anor3 90 |
. . . . . . 7
(a⊥ ∩ (a ∩ b)⊥ ) = (a ∪ (a ∩
b))⊥ |
20 | 19 | ax-r5 38 |
. . . . . 6
((a⊥ ∩
(a ∩ b)⊥ ) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
((a ∪ (a ∩ b))⊥ ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) |
21 | | orabs 120 |
. . . . . . . 8
(a ∪ (a ∩ b)) =
a |
22 | 21 | ax-r4 37 |
. . . . . . 7
(a ∪ (a ∩ b))⊥ = a⊥ |
23 | 22 | ax-r5 38 |
. . . . . 6
((a ∪ (a ∩ b))⊥ ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
(a⊥ ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) |
24 | | womaa 222 |
. . . . . . . 8
(a⊥ ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
(a⊥ ∪ (a ∩ b)) |
25 | | an1 106 |
. . . . . . . . 9
((a⊥ ∪
(a ∩ b)) ∩ 1) = (a⊥ ∪ (a ∩ b)) |
26 | 25 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∪ (a ∩ b)) =
((a⊥ ∪ (a ∩ b))
∩ 1) |
27 | | df-t 41 |
. . . . . . . . 9
1 = (a ∪ a⊥ ) |
28 | 27 | lan 77 |
. . . . . . . 8
((a⊥ ∪
(a ∩ b)) ∩ 1) = ((a⊥ ∪ (a ∩ b))
∩ (a ∪ a⊥ )) |
29 | 24, 26, 28 | 3tr 65 |
. . . . . . 7
(a⊥ ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
((a⊥ ∪ (a ∩ b))
∩ (a ∪ a⊥ )) |
30 | 21 | ax-r1 35 |
. . . . . . . . . 10
a = (a ∪ (a ∩
b)) |
31 | 30 | ax-r4 37 |
. . . . . . . . 9
a⊥ = (a ∪ (a ∩
b))⊥ |
32 | 31 | lor 70 |
. . . . . . . 8
(a ∪ a⊥ ) = (a ∪ (a ∪
(a ∩ b))⊥ ) |
33 | 32 | lan 77 |
. . . . . . 7
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ a⊥ )) = ((a⊥ ∪ (a ∩ b))
∩ (a ∪ (a ∪ (a ∩
b))⊥ )) |
34 | 19 | ax-r1 35 |
. . . . . . . . 9
(a ∪ (a ∩ b))⊥ = (a⊥ ∩ (a ∩ b)⊥ ) |
35 | 34 | lor 70 |
. . . . . . . 8
(a ∪ (a ∪ (a ∩
b))⊥ ) = (a ∪ (a⊥ ∩ (a ∩ b)⊥ )) |
36 | 35 | lan 77 |
. . . . . . 7
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ (a ∪ (a ∩ b))⊥ )) = ((a⊥ ∪ (a ∩ b))
∩ (a ∪ (a⊥ ∩ (a ∩ b)⊥ ))) |
37 | 29, 33, 36 | 3tr 65 |
. . . . . 6
(a⊥ ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
((a⊥ ∪ (a ∩ b))
∩ (a ∪ (a⊥ ∩ (a ∩ b)⊥ ))) |
38 | 20, 23, 37 | 3tr 65 |
. . . . 5
((a⊥ ∩
(a ∩ b)⊥ ) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
((a⊥ ∪ (a ∩ b))
∩ (a ∪ (a⊥ ∩ (a ∩ b)⊥ ))) |
39 | 18, 38 | ax-r2 36 |
. . . 4
((0 ∪ (a⊥ ∩
(a ∩ b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
((a⊥ ∪ (a ∩ b))
∩ (a ∪ (a⊥ ∩ (a ∩ b)⊥ ))) |
40 | 13, 16, 39 | 3tr 65 |
. . 3
((((a ∩ a⊥ ) ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
((a⊥ ∪ (a ∩ b))
∩ (a ∪ (a⊥ ∩ (a ∩ b)⊥ ))) |
41 | 4, 8, 40 | 3tr 65 |
. 2
(((a⊥ ∩
(a ∩ b)) ∪ (a⊥ ∩ (a ∩ b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) =
((a⊥ ∪ (a ∩ b))
∩ (a ∪ (a⊥ ∩ (a ∩ b)⊥ ))) |
42 | | df-i3 46 |
. 2
(a →3 (a ∩ b)) =
(((a⊥ ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b)⊥ )) ∪ (a ∩ (a⊥ ∪ (a ∩ b)))) |
43 | | df-id3 52 |
. 2
(a ≡3 (a ∩ b)) =
((a⊥ ∪ (a ∩ b))
∩ (a ∪ (a⊥ ∩ (a ∩ b)⊥ ))) |
44 | 41, 42, 43 | 3tr1 63 |
1
(a →3 (a ∩ b)) =
(a ≡3 (a ∩ b)) |