Proof of Theorem di
Step | Hyp | Ref
| Expression |
1 | | conb 122 |
. . 3
((b⊥ ∪ a⊥ )⊥ ≡
a) = ((b⊥ ∪ a⊥ )⊥
⊥ ≡ a⊥ ) |
2 | | ax-a1 30 |
. . . . . 6
(b⊥ ∪ a⊥ ) = (b⊥ ∪ a⊥ )⊥
⊥ |
3 | 2 | ax-r1 35 |
. . . . 5
(b⊥ ∪ a⊥ )⊥
⊥ = (b⊥
∪ a⊥
) |
4 | 3 | rbi 98 |
. . . 4
((b⊥ ∪ a⊥ )⊥
⊥ ≡ a⊥ ) = ((b⊥ ∪ a⊥ ) ≡ a⊥ ) |
5 | | mi 125 |
. . . 4
((b⊥ ∪ a⊥ ) ≡ a⊥ ) = (a⊥ ∪ (b⊥ ⊥ ∩
a⊥ ⊥
)) |
6 | 4, 5 | ax-r2 36 |
. . 3
((b⊥ ∪ a⊥ )⊥
⊥ ≡ a⊥ ) = (a⊥ ∪ (b⊥ ⊥ ∩
a⊥ ⊥
)) |
7 | 1, 6 | ax-r2 36 |
. 2
((b⊥ ∪ a⊥ )⊥ ≡
a) = (a⊥ ∪ (b⊥ ⊥ ∩
a⊥ ⊥
)) |
8 | | ancom 74 |
. . . 4
(a ∩ b) = (b ∩
a) |
9 | | df-a 40 |
. . . 4
(b ∩ a) = (b⊥ ∪ a⊥
)⊥ |
10 | 8, 9 | ax-r2 36 |
. . 3
(a ∩ b) = (b⊥ ∪ a⊥
)⊥ |
11 | 10 | rbi 98 |
. 2
((a ∩ b) ≡ a) =
((b⊥ ∪ a⊥ )⊥ ≡
a) |
12 | | ax-a1 30 |
. . . . 5
b = b⊥
⊥ |
13 | | ax-a1 30 |
. . . . 5
a = a⊥
⊥ |
14 | 12, 13 | 2an 79 |
. . . 4
(b ∩ a) = (b⊥ ⊥ ∩
a⊥ ⊥
) |
15 | 8, 14 | ax-r2 36 |
. . 3
(a ∩ b) = (b⊥ ⊥ ∩
a⊥ ⊥
) |
16 | 15 | lor 70 |
. 2
(a⊥ ∪ (a ∩ b)) =
(a⊥ ∪ (b⊥ ⊥ ∩
a⊥ ⊥
)) |
17 | 7, 11, 16 | 3tr1 63 |
1
((a ∩ b) ≡ a) =
(a⊥ ∪ (a ∩ b)) |