Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > conb | GIF version |
Description: Contraposition law. (Contributed by NM, 10-Aug-1997.) |
Ref | Expression |
---|---|
conb | (a ≡ b) = (a⊥ ≡ b⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . . 3 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) | |
2 | ax-a1 30 | . . . . 5 a = a⊥ ⊥ | |
3 | ax-a1 30 | . . . . 5 b = b⊥ ⊥ | |
4 | 2, 3 | 2an 79 | . . . 4 (a ∩ b) = (a⊥ ⊥ ∩ b⊥ ⊥ ) |
5 | 4 | lor 70 | . . 3 ((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ⊥ ∩ b⊥ ⊥ )) |
6 | 1, 5 | ax-r2 36 | . 2 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ⊥ ∩ b⊥ ⊥ )) |
7 | dfb 94 | . 2 (a ≡ b) = ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) | |
8 | dfb 94 | . 2 (a⊥ ≡ b⊥ ) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ⊥ ∩ b⊥ ⊥ )) | |
9 | 6, 7, 8 | 3tr1 63 | 1 (a ≡ b) = (a⊥ ≡ b⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-b 39 df-a 40 |
This theorem is referenced by: di 126 wr4 199 wcon 202 wcon1 207 wcon2 208 wwfh3 218 wwfh4 219 ka4lem 229 ska3 232 nomcon5 306 nom55 336 wom2 434 u3lemax4 796 comanbn 873 |
Copyright terms: Public domain | W3C validator |