QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  rbi GIF version

Theorem rbi 98
Description: Introduce biconditional to the right. (Contributed by NM, 10-Aug-1997.)
Hypothesis
Ref Expression
rbi.1 a = b
Assertion
Ref Expression
rbi (ac) = (bc)

Proof of Theorem rbi
StepHypRef Expression
1 rbi.1 . . 3 a = b
21lbi 97 . 2 (ca) = (cb)
3 bicom 96 . 2 (ac) = (ca)
4 bicom 96 . 2 (bc) = (cb)
52, 3, 43tr1 63 1 (ac) = (bc)
Colors of variables: term
Syntax hints:   = wb 1  tb 5
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40
This theorem is referenced by:  2bi  99  bi1  118  di  126  wwbmp  205  wcon2  208  wwoml2  212  wwoml3  213  wr2  371  wler  391  i3th4  546  mlaconj4  844
  Copyright terms: Public domain W3C validator